Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Прохлорофиты

Обнаружены эубактерии, осуществляющие фотосинтез кислородного типа, весьма сходные с цианобактериями, но отличающиеся от них составом фотосинтетических пигментов: отсутствием фикобилипротеинов и наличием хлорофилла b. Организмы названы прохлорофитами60. В IX издании Определителя бактерий Берги они выделены в порядок Prochlorales. В составе порядка 3 рода, различающихся морфологическими и некоторыми физиолого-биохимическими признаками. Это одноклеточные (сферические) или многоклеточные (нитчатые) формы, неподвижные или подвижные. Размножаются бинарным делением. Клеточная стенка грамотрицательного типа, напоминает таковую цианобактерий. Нити ДНК, не отграниченные от цитоплазмы мембраной, располагаются в центральной области клетки.

60 Первый представитель этой группы был описан в 1975 г. Р. А. Левиным (R. A. Lewin). Им же было предложено название, в котором отражено представление об этих организмах как о возможных предшественниках эукариотных зеленых водорослей (Chlorophyta), произошедших от подобных прокариот или путем длительного процесса внутриклеточной дифференцировки, или же в результате симбиогенеза. В последнем случае Прохлорофиты — предки хлоропластов.

Большую часть цитоплазмы занимают тилакоиды, располагающиеся обычно концентрическими кругами по периферии клетки. Тилакоиды, как и у цианобактерий, лежат в цитоплазме "свободно", т. е. не отделены от нее замкнутой мембраной, и имеют тенденцию сближаться, образуя пары или стопки, состоящие из трех и более тилакоидов. Внутренние и наружные поверхности тилакоидных мембран гладкие. Фикобилисомы и фикобилипротеины не обнаружены.

Фотосинтетические пигменты представлены хлорофиллами a и b и каротиноидами. Основную массу последних составляют -каротин и ксантофилл, близкий к зеаксантину. Обнаружено несколько каротиноидов в незначительных количествах, среди которых идентифицированы эхиненон, -криптоксантин, изо- криптоксантин и др. Все эти каротиноиды найдены и у цианобактерий. По составу жирных кислот и гликолипидов прохлорофиты также близки к цианобактериям. В цитоплазме обнаружены 70S-рибосомные частицы, содержащие РНК 16S- и 23S-типов, аналогично рибосомальным РНК прокариот и хлоропластов эукариот. Молярное содержание ГЦ в ДНК — 39 — 53%.

CO2 активно фиксируется в восстановительном пентозофосфатном цикле, о чем свидетельствуют активности двух специфических ферментов этого пути: рибулозодифосфаткарбоксилазы и фосфорибулокиназы. Первый фермент содержится в клетке также в карбоксисомах и состоит из 8 больших и малых субъединиц, что характерно для рибулозодифосфаткарбоксила-зы цианобактерий и зеленых водорослей. Конечным продуктом углеродного метаболизма на свету является полисахарид, схожий с гликогеном цианобактерий. Помимо фотоавтотрофии обнаружена способность прохлорофит к фотогетеротрофии и росту в темноте с получением энергии в процессе дыхания. Для некоторых представителей группы показана способность фиксировать N2.

Как и цианобактерий, Прохлорофиты сталкиваются с проблемой внутриклеточного O2, который они, с одной стороны, способны использовать, обнаруживая склонность к микроаэрофилии, с другой — имеют определенные системы защиты от его токсических форм. В качестве одной из защитных систем обнаружена супероксиддисмутаза FeMn-типа, характерная для прокариотных форм. Первый представитель этой группы, отнесенный к роду Prochloron, был обнаружен на поверхности тела морских животных — колониальных асцидий61. Длительное время не удавалось культивировать Prochloron в лабораторных условиях. Недавно было обнаружено, что зависимость от хозяина определяется потребностью Prochloron в аминокислотах, в частности в триптофане. Свободноживущая форма, отнесенная к роду Prochlorothrix, обнаружена в пресном озере в 1986г. Она легко получена в чистой культуре и способна расти на минеральной среде.

61 Асцидии относятся к низшим хордовым, классу Ascidiae, объединяющему около тысячи одиночных и колониальных видов. Обитают только в морях. Тело асцидий покрыто туникой, имеющей сложное строение-Скопления клеток Prochloron обнаружены в области ротового или клоакального сифонов или погружены в материал туники.

Прохлорофиты привлекают к себе большое внимание в связи с проблемами эволюции фотосинтетического аппарата и возникновения фотосинтезирующих эукариот. Сравнение прохлорофит с цианобактериями и хлоропластами зеленых водорослей и высших растений обнаруживает черты сходства как с фотосинтетическими органеллами эукариот (организация тилакоидов, состав хлорофиллов), так и с цианобактериями (клеточное строение, состав каротиноидов, липидов, некоторые особенности метаболизма, последовательность оснований 16S рРНК). Для ответа на вопрос, в каком отношении Прохлорофиты находятся с цианобактериями (развивались ли независимо и параллельно с цианобактериями, возникли ли из их предшественников, потерявших способность синтезировать фикобилипротеины, или наоборот цианобактерий возникли из прохлорофит), необходимо дальнейшее сравнительное изучение обеих групп эубактерии с фотосинтезом кислородного типа. Прохлорофиты рассматриваются в качестве возможных эндосимбионтов, последующая эволюция которых привела к возникновению хлоропластов зеленых водорослей и высших растений.

ФОТОТРОФНЫЕ ЭУБАКТЕРИИ В ПРИРОДЕ

Три основных фактора определяют распространение фототрофных эубактерий в природе: свет, молекулярный кислород и питательные вещества. Потребности в разных частях солнечного спектра для фотосинтеза определяются набором светособирающих пигментов. Эубактерий с кислородным типом фотосинтеза поглощают свет в том же диапазоне длин волн, что водоросли и высшие растения (см. рис. 71). Пурпурные и зеленые бактерии часто развиваются в водоемах под более или менее плотным поверхностным слоем, состоящим из цианобактерий и водорослей, эффективно поглощающих свет до 750 нм. Фотосинтез пурпурных и зеленых бактерий в этих условиях связан со способностью бактериохлорофиллов поглощать свет в красной и инфракрасной областях спектра за пределами поглощения хлорофиллов. Крайняя граница этой части спектра определяется способностью бактериохлорофилла b некоторых пурпурных бактерий поглощать свет с длиной волны до 1100 нм. Некоторые фотосинтезирующие эубактерий могут расти в водоемах на глубине до 20–30 м, что осуществляется за счет активности другой группы пигментов — каротиноидов. Известно, что различные лучи солнечного спектра поглощаются водой с разной интенсивностью. Глубже всего проникает свет голубой и зеленой частей спектра (450–550 нм), сильнее поглощается ультрафиолет и красный свет. Содержащиеся в клетках некоторых фототрофных эубактерий каротиноиды активно поглощают свет с длиной волны в области 460 нм, обеспечивая этим бактериям рост на значительных глубинах, куда проникает только свет этой части спектра.

В отношении к молекулярному кислороду среди фототрофных эубактерий на одном полюсе располагаются строгие анаэробы, на другом — организмы, у которых O2 образуется внут-риклеточно. Многие виды — факультативные анаэробы, есть аэротолерантные формы и микроаэрофилы. У фотосинтезирующих эубактерий молекулярный кислород часто выступает как могучий фактор, регулирующий их метаболизм: в аэробных условиях у пурпурных и зеленых бактерий репрессируется синтез фотосинтетических пигментов и тем самым уничтожается основа для фототрофного способа существования.

Значительны различия в питательных веществах, необходимых для построения веществ клетки, и донорах электронов. Диапазон — от облигатной зависимости от органических соединений, характерной для гелиобактерий и некоторых пурпурных бактерий, до способности расти на минеральной среде, свойственной цианобактериям и несимбиотическим прохлорофитам. К другим факторам внешней среды, определяющим рост фототрофных эубактерий, относятся pH, температура, концентрация солей.

Пурпурные и зеленые серобактерии, характеризующиеся близкими потребностями в факторах среды, часто сосуществуют вместе в освещенных анаэробных водных средах (пресных или соленых), богатых сульфидом. Пурпурные несерные бактерии имеют свою экологическую нишу. Как правило, они не развиваются в зонах активного роста фототрофных серобактерий. Благоприятные условия для роста несерных пурпурных бактерий, более чувствительных к сульфиду, но менее чувствительных к O2, создаются в местах, богатых органическими веществами.

Первый представитель зеленых нитчатых бактерий Chloroflexus aurantiacus был выделен из термального источника, где рос, формируя пленку толщиной несколько миллиметров. Позднее термофильные штаммы этого вида были найдены во многих нейтральных и щелочных горячих источниках с температурой от 45 до 75°, где условия, как правило, микроаэробные. Часто Chloroflexus образует смешанные популяции с термофильными цианобактериями рода Synechococcus. Вскоре из природных слоев пресных озер были выделены мезофильные аналоги Chloroflexus с оптимальной температурой роста 20–25°.

В группе цианобактерий достигнуто наибольшее среди фототрофных эубактерий приспособление к широкому диапазону внешних условий, определившее их почти повсеместное распространение. Эти организмы встречаются во льдах и горячих источниках с температурой до 70–80°, обитают в пресных водоемах разного типа, морях и океанах, в почвах и пустынях. В экономическую проблему выросло наблюдаемое в ряде водоемов чрезмерное массовое развитие цианобактерий, поскольку виды, доминирующие в этом процессе, токсичны для беспозвоночных, рыб и домашних животных. Подобные явления описаны для ряда внутренних водоемов нашей страны и других стран мира.

Некоторые фототрофные эубактерий существуют в ассоциациях с другими организмами. Таковы ассоциации ряда зеленых серобактерий с хемоорганотрофными бактериями, прохло- рофит с асцидиями, цианобактерий с грибами, мхами, папоротниками, водорослями, высшими растениями. Если в симбиозах один из компонентов — азотфиксирующие цианобактерий, они в первую очередь снабжают партнера связанным азотом. В других случаях конкретная природа связей между симбионтами неясна.

Фототрофные эубактерий, особенно цианобактерий, играют значительную роль в круговороте углерода и азота, а серобактерии — и серы. Сделаны определенные шаги на пути практического использования фототрофных эубактерий, например, применения азотфиксирующих цианобактерий для повышения плодородия рисовых полей, культивирования пурпурных бактерий и цианобактерий в промышленных масштабах для получения кормового белка и перспективного источника энергии — молекулярного водорода.

В научном плане фототрофные эубактерии представляют интерес для изучения механизма фотосинтеза и азотфиксации. На прокариотном уровне сформировался тип фотосинтеза, сопровождающийся выделением в атмосферу O2. С этого момента начался новый этап в эволюции жизни, решающим фактором в котором явился молекулярный кислород.

 

Назад Главная страница Оглавление Вниз Вперед

 

ГЛАВА 15. МОЛЕКУЛЯРНЫЙ КИСЛОРОД КАК ФАКТОР ЭВОЛЮЦИИ

Общепринято представление о том, что молекулярный кислород атмосферы имеет биогенное происхождение, и его появление непосредственно связано с формированием нового типа фотосинтеза, при котором в качестве донора электронов используется вода. В условиях первобытной Земли до возникновения выделяющих кислород фотосинтезирующих эубактерии единственным источником свободного кислорода была реакция фотолиза паров воды в атмосфере, происходящая под действием коротковолнового ультрафиолета. Однако количество "фотолитического" кислорода было ничтожным. Образующийся кислород использовался для окисления газов первобытной атмосферы и восстановленных минералов, входящих в состав земной коры.

Из всех организмов, осуществляющих фотосинтез с выделением O2, наиболее примитивно организованными являются фотосинтезирующие эубактерии (цианобактерий, прохлорофиты), и мы вправе предполагать, что появление молекулярного кислорода связано с этими организмами или с какими-то их весьма близкими предками.

До возникновения фотосинтезирующих эукариот, и в первую очередь высших растений, содержание свободного кислорода в атмосфере Земли было незначительным по сравнению с его содержанием в современной земной атмосфере. Однако, по проведенным подсчетам, для переключения организма с брожения на дыхание достаточна концентрация кислорода 0,2%, т. е. 0,01 его уровня в современной атмосфере. Появление и накопление O2 в земной атмосфере было событием, значение которого для последующей эволюции жизни на Земле трудно переоценить. Прежде всего это означало существенную перестройку всего, что сформировалось на Земле в "докислородную" эпоху, и в первую очередь касалось живых организмов.

Образование O2 в возрастающих количествах сделало возможным протекание окислительных реакций в широких масштабах. Изменился характер атмосферы: из восстановительной она стала окислительной. Последнее повлекло за собой существенные изменения в отношении донор-акцепторной проблемы. Если в условиях бескислородной атмосферы доминирующим было решение проблемы акцептора электронов, то в условиях кислородной атмосферы основной становится проблема донора электронов, поскольку с появлением O2 в атмосфере Земли образовался источник превосходного акцептора электронов.

ВЗАИМОДЕЙСТВИЕ ПРОКАРИОТ С МОЛЕКУЛЯРНЫМ КИСЛОРОДОМ

Первоначально молекулярный кислород появился внутри клетки, и это сразу же создало проблему взаимодействия клетки с O2. Очевидно, что у первых фотосинтезирующих организмов, продуцировавших молекулярный кислород, не было ферментных систем не только для выгодного использования этого акцептора, но и для его нейтрализации в клетке. Не было их также и у других существовавших анаэробных форм жизни. Поэтому можно предполагать, что первый тип взаимодействия с O2 базировался на резко отрицательном отношении к нему клетки. Пример этого — многочисленные данные по высокой токсичности молекулярного кислорода для современных облигатно анаэробных организмов62.

62 В этой связи интересны данные о том, что в период, предшествовавший появлению больших количеств свободного кислорода в атмосфере, прокариотное сообщество было разнообразнее, чем в последующее время. Разнообразие прокариотного сообщества значительно уменьшилось 1,5 млрд лет назад (см. рис. 52).

По мере накопления O2 становится постоянным компонентом внешней среды, и только локально могут быть созданы такие условия, где он отсутствует или содержится в следовых количествах. Это обусловило два возможных варианта последующего взаимодействия прокариот с молекулярным кислородом. Одни из существовавших анаэробных форм "ушли" в места обитания, где O2 практически отсутствует, и тем самым сохранили "облик бескислородной эпохи". Другие были вынуждены пойти по пути приспособления к "кислородным" условиям. Это означает, что они формировали новые метаболические реакции, служащие в первую очередь для нейтрализации отрицательного действия молекулярного кислорода.

Итак, следующий шаг на пути взаимодействия прокариот с кислородом — возможность существовать в присутствии O2, нейтрализуя его отрицательное действие. Определенное представление о формировавшихся системах защиты от молекулярного кислорода у прокариот можно получить, изучая представителей этой группы, располагающихся на разных ступенях эволюционной лестницы.


Дата добавления: 2015-08-03; просмотров: 92 | Нарушение авторских прав


Читайте в этой же книге: Особенности конструктивного метаболизма | Роль в природе и практическое значение | Хлорофиллы | Фикобилипротеины | Каротиноиды | Спектры поглощения клеток разных групп фотосинтезирующих эубактерий | Восстановительный цикл трикарбоновых кислот | Восстановительный пентозофосфатный цикл | Пурпурные бактерии | Зеленые бактерии |
<== предыдущая страница | следующая страница ==>
Цианобактерии| Токсические эффекты молекулярного кислорода и его производных

mybiblioteka.su - 2015-2024 год. (0.012 сек.)