Читайте также: |
|
Проблема получения соединений азота является жизненно важной для развития человечества. Люди научились пользоваться азотными соединениями с ранних времен. Еще до начала нашей эры первое азотное соединение, известное человечеству, – калий азотнокислый – уже применялось для изготовления зажигательных смесей.
В 778 году арабский ученый Джабир Ибн-Хайян описал способ приготовления крепкой водки – азотной кислоты – путем перегонки калиевой селитры с квасцами. В 1785 году Ломоносов в работе: «Первые основания металлургии описал «Как крепкую водку гнать», «Как оную чистить», «Как оную пробовать» (анализ)».
Важной частью человеческого организма являются белки, в состав которых входит азот. В сутки человек потребляет 70–100г белков, содержащих 13 –16 г азота. Только растения способны синтезировать белковые вещества непосредственно из нитратных или аммонийных соединений и этим обеспечивают человека и животных белками. Запасы природных соединений азота ограничены. Есть залежи натриевой селитры в Чили, калиевой селитры в Индии, немного азота есть в углях (1.0 – 2.5%), нефти (0.02 – 1.5%), торфе. Но основное количество азота (4·1015 тонн) содержится в атмосферном воздухе. В результате круговорота азота в природе происходит синтез из элементарного азота и его соединений, которые потребляются растениями и животными и последующее частичное разложение соединений азота снова до азота. Потери фиксированного азота почвой связаны с денитрификацией его соединений, вызываемое особыми бактериями, находящимися в почве. Часть связанного азота вымывается из почвы водой и уносится в моря. Значительное количество азота, усваиваемого сельскохозяйственными растениями, вообще не возвращается в почву. Все это требует непрерывного внесения азота в почву.
Формы существования азота в литосфере
N
Живые Ископаемое Минералы
организмы топливо
Белковые Каменный Нефть СN- NO3- NH4+
вещества уголь 0.02-1.5 %
17% 1- 2.5 %
В настоящее время существуют два метода фиксации атмосферного азота – биологический и технический.
Биологическая фиксация азота связана с жизнедеятельностью находящихся в почве микроорганизмов – бактерий. Более 150 лет назад установили, что почва, на которой росли бобовые растения (горох, вика, люпин, бобы), становится плодороднее. Такое действие бобовых растений связано с тем, что на корнях этих растений живут бактерии, усваивающие непосредственно азот из воздуха. Например, люцерна оставляет в почве до 70 кг азота на 1 га. На каждом гектаре почвы, занятой бобовыми растениями, имеющими на корнях клубеньки, связывается от 100 до 300 кг азота в год. Исследователи клубеньков бобовых растений обнаружили, что они содержат микроорганизмы, в состав которых входит большое количество азота. Бактерии, живущие в симбиозе с корнями бобовых растений, питаются соками растений, поглощают азот из воздуха и перерабатывают его в форму, доступную для усвоения растениями.
В начале 20 века были обнаружены свободноживущие бактерии, называемые азотобактериями, которые в процессе своей жизнедеятельности также способны превращать азот из воздуха в форму, усвояемую растениями. Азотобактерии могут давать до 50 кг азота на 1га почвы. В настоящее время производится препарат нитрагин, способствующий быстрому размножению клубеньковых бактерий.
Связанный азот поступает в почву также с атмосферными осадками в виде азотной и азотистой кислот, образующимися при электрических разрядах. Количество связанного азота, вносимого в почву с осадками, составляет 4 – 15 кг на 1 га почвы в год.
Технический метод фиксации атмосферного азота позволяет получить минеральные удобрения с высоким содержанием азота, применение которых оказывает быстрое агрохимическое воздействие на повышение урожайности. Азотные удобрения, получаемые в виде солей, жидкого аммиака, могут сохраняться длительное время без разложения и легко транспортируются. Внесение их в почву позволяет резко поднять урожайность сельскохозяйственных, в особенности, технических культур. Доля азотных удобрений в общем объеме производства минеральных туков составляет 30–40%.
Почти все азотные удобрения являются соединениями аммиака и азотной кислоты. Путем нитрования различных органических веществ (толуола, фенола, ксилола, бензола, целлюлозы и других) получаются их нитропроизводные, имеющие разнообразное применение в качестве взрывчатых веществ в военной и горнодобывающей технике, в строительстве дорог, при синтезе красителей. Азот является составной частью органических соединений – аминов, имидов, нитрилов, цианатов и других, применяемых при синтезе различных веществ, в том числе таких полимеров, как полиамиды, полиуретаны, полиакрилонитрил и т. д. Азотная кислота и оксиды азота применяются как окислители в ракетной технике, в производстве серной кислоты. Двуокись азота применяется для стерилизации семян, закись азота – для наркоза больных при операциях. Соли, образованные аминами, широко используются в качестве гербицидов. Карбамид не только удобрение, но и белковая добавка в кормовые рационы жвачных животных.
В начале ХХ века почти одновременно были разработаны три технических метода синтеза соединений из молекулярного азота: дуговой, цианамидный и аммиачный.
1. В основе дугового метода лежит эндотермическая реакция прямого окисления азота кислородом воздуха, протекающая при температуре около 3000°С в пламени вольтовой дуги по реакции (1):
(1)
где Н = 179.2 кДж,
с последующим доокислением оксида азота (II) и получением нитрата кальция по реакции (2):
NO + Ca(OH)2 + O2 Ca(NO3)2 (2)
2. Цианамидный метод основан на способности тонкоизмельченного карбида кальция реагировать при температуре около 1000°С с молекулярным азотом с образованием кальцийцианамида по реакции (3):
СаС2 + N2 = СаСN2 + C - H, (3)
где Н = 300 кДж.
с последующим превращением кальцийцианамида в аммиак по реакции (4):
СаCN2 + 3H2O = 2NH3 + CaCO3 (4)
С 1906 г. метод фиксации атмосферного азота через цианамид кальция стал быстро распространяться во многих странах, поскольку он оказался в 304 раза экономичнее дугового метода. Так, если расход энергии на получение 1 т связанного азота дуговым методом составлял 70 тыс.кВт*ч, то на получение такого же количества связанного азота цианамидным методом расходовалось 15 тыс кВт*ч энергии.
3. Аммиачный метод
Одними из наиболее сложных и важных исследований в области неорганической химии были работы по изучению процесса получения аммиака из азота и водорода и его окисления в оксиды азота и азотную кислоту. Огромное значение в развитии химии азота имели работы Д.И. Менделеева, который еще в 1869г в своих «Основах химии» наметил новые направления в исследованиях соединений азота и пути разработки технически выгодного способа связывания атмосферного азота. Первая промышленная установка синтеза аммиака по методу Габера и Боша была введена в эксплуатацию в 1913г. Могучим средством ускорения химической реакции в этом процессе стал катализ.
В основе метода лежит реакция взаимодействия азота и водорода по реакции (5):
N2 + 3H2 2 NH3 - H, (5)
где H = 111.6 кДж.
Сравнительная энергоемкость этих методов фиксации азота приведена в таблице (1).
Таблица 1 - Энергоемкость методов фиксации азота
Метод | Затраты энергии на производство 1 т аммиака, кДж |
Дуговой | 7·104 |
Цианамидный | 1.2 ·104 |
Аммиачный | 0.5 ·104 |
Энергетически наиболее выгоден аммиачный метод фиксации, что и обусловило его широкое промышленное внедрение.
В последнее время дуговой метод, не получивший промышленного применения вследствие низкого выхода оксида азота (II) и весьма высокого потребления электроэнергии, модифицируется в виде плазмохимического процесса, осуществляемого в низкотемпературной воздушной плазме по схеме:
N2 + О2 (N + O) NO (6)
Процесс протекает при температуре 5·103 – 104 0С, давлении 2 МПа и времени контактирования 0.0001сек, что обеспечивает весьма высокую производительность плазменной установки. Комбинирование установки с магнитогидродинамическим генератором позволяет использовать вторичные энергоресурсы и обеспечить возврат энергии.
В 1909 г. Линде и Брон разработали криогенный метод получения азотоводородной смеси для синтеза аммиака из водяного и коксового газов. В азотной промышленности находят применение также электрохимические методы получения водорода путем разложения воды
Таким образом, вследствие разработки и внедрения промышленных и животных методов фиксации атмосферного азота, биохимический цикл азота, характеризуемый кругооборотом его по схеме:
Растения животные поступление в почву продуктов жизнедеятельности и отмирания растений и животных биохимические процессы разложения захват растениями усвояемых форм азота
превращается в технобиогеохимический цикл, в котором преобладающее значение имеет техносфера.
Дата добавления: 2015-07-26; просмотров: 454 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Примечания | | | Производство азота и кислорода методом глубокого охлаждения |