Читайте также:
|
|
Арккотангенсом числа называется число , такое, что и .
Обозначение: .
Логари́фм числа по основанию (от греч. λόγος — «слово», «отношение» и ἀριθμός — «число»[1]) определяется[2] какпоказатель степени, в которую надо возвести основание , чтобы получить число . Обозначение: , произносится: " логарифм по основанию ".
Из определения следует, что нахождение равносильно решению уравнения . Например, потому что
Натуральный логарифм — это логарифм по основанию e, где e — иррациональная константа, равная приблизительно 2,718281828. Натуральный логарифм обычно обозначают как ln(x), log e (x) или иногда просто log(x), если основание e подразумевается.[1]
Натуральный логарифм числа x (записывается как ln(x)) — это показатель степени, в которую нужно возвести число e, чтобы получить x. Например, ln(7,389...) равен 2, потому что e 2= 7,389.... Натуральный логарифм самого числа e (ln(e)) равен 1, потому что e 1 = e, а натуральный логарифм 1 (ln(1)) равен 0, поскольку e 0 = 1.
Десятичный логарифм — логарифм по основанию 10. Другими словами, десятичный логарифм числа есть решение уравнения
Произво́дная (функции в точке) — основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке). Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении привращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).
Процесс вычисления производной называется дифференци́рованием. Обратный процесс — нахождение первообразной —интегрирование.
Преде́л фу́нкции (предельное значение функции) в заданной точке, предельной для области определения функции, — такая величина, к которой стремится значение рассматриваемой функции при стремлении её аргумента к данной точке.
Предел функции является обобщением понятия предела последовательности: изначально под пределом функции в точке понимали предел последовательности элементов области значений функции, составленной из образов точек последовательности элементов области определения функции, сходящейся к заданной точке (предел в которой рассматривается); если такой предел существует, то говорят, что функция сходится к указанному значению; если такого предела не существует, то говорят, что функция расходится.
Функция y = f (x) | Производные и вывод формулы |
y = x | y =1 |
Место для формулы.
Дата добавления: 2015-07-24; просмотров: 178 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Некоторые следствия из аксиом | | | Александр Жуков |