Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Алгоритм Бюффона для определения числа Пи

Читайте также:
  1. II ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
  2. II. Основные определения
  3. А) Критический метод определения подлинности. §30
  4. А. Определения: экскурс в историю
  5. Алгоритм 2.14. Сортировка таблиц, управляемая пользователем
  6. Алгоритм 2.15. Форматирование единиц времени календарной диаграммы
  7. Алгоритм 2.25. Форматирование графика ресурсов

Случайные величины использовались для решения различных прикладных задач достаточно давно. Примером может служить способ определения числа Пи, который был предложен Бюффоном еще в 1777 году. Суть метода была в бросании иглы длиной L на плоскость, расчерченную параллельными прямыми, расположенными на расстоянии r друг от друга. Вероятность того, что отрезок пересечет прямую, связана с числом Пи.

Бюффон подсчитал: р = . Таким образом, если L = 2 l, то р = . Кроме того, р = , где N - число бросаний, N1 - число пересечений иглы с линиями.

Относительная доля случаев, когда игла пересечет хотя бы однуиз параллельныхпрямых равно р = . Это был одиниз старинных способов опредения числа π.

Вычисление числа Пи методом Монте-Карло, его суть сводится к простейшему перебору точек на площади.

Суть расчета заключается в том, что мы берем квадрат со стороной a = 2 R, вписываем в него круг радиусом R. И начинаем наугад ставить точки внутри квадрата. Геометрически, вероятность P1 того, что точка попадет в круг, равна отношению площадей круга и квадрата:
P1=Sкруг / Sквадрата = πR2 / a 2 = πR2 / (2 R) 2= πR2 / (2 R) 2 = π / 4 (1)
Выглядит это так:

Вероятность попадания точки в круг можно также посчитать после численного эксперимента ещё проще: посчитать количество точек, попавших в круг, и поделить их на общее количество поставленных точек:
P2=Nпопавших в круг / Nточек; (2)
Имитационное моделирование (ситуационное моделирование) — метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности.

Программа, реализующая имитационную модель, отражает изменение состояния системы, выдавая значения ее искомых параметров в виде таблиц по шагам времени или в последовательности происходящих в системе событий. Для визуализации результатов моделирования часто используется графическое представление, в т.ч. анимированное.

Всем случалось стоять в очереди, пытаться дозвониться. Из таких «простых» проблем в начале XX века родилась весьма непростая наука - теория массового обслуживания, использующая аппарат теории вероятностей и математической статистики, дифференциальных уравнений и численных методов. Рассмотрим одну из простейших задач данного класса.

«очередь к одному продавцу» Имеется магазин с одним продавцом, в который случайным образом входят покупатели. Если продавец свободен, он начинает обслуживать покупателя сразу, если покупателей несколько, выстраивается очередь. Итак, на входе этой задачи случайный процесс прихода покупателей в магазин. Второй случайный процесс длительность обслуживания каждого из покупателей.. в конкретной анимационной модели я задавала эти параметры и еще длину очереди, при к/й уходил покупатель. Результатом мод-ия были: кол-во посетивших и обслуженный, время обслуж-я, время пребывания в очереди..

Модель волки и зайцы:

"Остров" размером 20 х 20 заселен дикими кроликами, волками и волчицами. Имеется по нескольку представителей каждого вида. Кролики в каждый момент времени с одинаковой вероятностью 1/9 передвигаются в один из восьми соседних квадратов (за исключением участков, ограниченных береговой линией) или просто сидят неподвижно. Каждый кролик с вероятностью 0,2 превращается в двух кроликов. Каждая волчица передвигается случайным образом, пока в одном из соседних восьми квадратов не окажется кролик, за которым она охотится. Если волчица и кролик оказываются в одном квадрате, волчица съедает кролика и получает одно очко. В противном случае она теряет 0,1 очка.

Волки и волчицы с нулевым количеством очков умирают.

В начальный момент времени все волки и волчицы имеют 1 очко.

Волк ведет себя подобно волчице до тех пор, пока в соседних квадратах не исчезнут все кролики; тогда, если волчица находится в одном из восьми близлежащих квадратов, волк гонится за ней.

Если волк и волчица окажутся в одном квадрате и там нет кролика, которого нужно съесть, они производят потомство случайного пола

Модель Жизнь: имитационная модель роста, распада и различных изменений в популяции живых организмов

Рассмотрим имитационную модель эволюции популяции живых организмов, известную под названием "Жизнь", которую легко реализовать на любом языке программирования.

Для построения алгоритма игры рассмотрим квадратное поле из п -\- 1 столбцов и строк с обычной нумерацией от 0 до п. Крайние граничные столбцы и строки для удобства определим как "мертвую зону", они играют лишь вспомогательную роль. (таблица)

Для любой внутренней клетки поля с координатами (i,j) можно определить 8 соседей. Если клетка "живая", ее закрашиваем, если клетка "мертвая", она пустая.

Зададим правила игры. Если клетка (i,j) "живая" и ее окружает более трех "живых" клеток, она погибает (от перенаселения). "Живая" клетка также погибает, если в ее окружении находится менее двух "живых" клеток (от одиночества). "Мертвая" клетка оживает, если вокруг нее появляются три "живые" клетки. В результате экспериментов с этой моделью можно найти,например, устойчивые расселения живых организмов, которые никогда не погибают, оставаясь неизменными или изменяя свою конфигурацию с определенным периодом. Абсолютно неустойчивым (гибнущим во втором поколении) является расселение "крестом".


Дата добавления: 2015-07-20; просмотров: 1713 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Генерирование последовательности случайных чисел с помощью ЭВМ| Проступки и меры взыскания

mybiblioteka.su - 2015-2024 год. (0.006 сек.)