Читайте также:
|
|
Любой переменный ток представляет собой колебательный процесс, который связан с обменом энергией между реактивными элементами цепей – индуктивными и ёмкостными сопротивлениями. Из теории колебаний известно, что их можно разделить на свободные и вынужденные. С математической точки зрения наличие правой части в дифференциальном уравнении колебательного процесса (неоднородном) означает, что решение его состоит из двух слагаемых: общего решения однородного уравнения (без правой части) и частного решения неоднородного уравнения.
В качестве последнего выступает режим установившихся колебаний, который определяется методами, изложенными в предыдущих разделах. В электротехнической литературе этот режим именуется принуждённым током, а в радиотехнической – вынужденными колебаниями.
В противовес им свободный ток или свободные колебания возникают при изменении условий поступления в цепи энергии извне, что связано с коммутационными процессами.
Изменение состояния цепи от одного установившегося процесса к другому при коммутации источников энергии или элементов цепи называется переходным процессом. Расчёт переходного процесса сводится к следующим стадиям.
1. Составление дифференциального уравнения. Используется второй закон Кирхгофа, если цепь неразветвлённая, либо выделяются замкнутые независимые контуры с токами, и для каждого составляется своё уравнение, и все уравнения решаются совместно.
2. Решение уравнения производится двумя путями: классическим, с использованием корней характеристического уравнения, либо операторным методом, переводящим расчёт в плоскость алгебры с последующим использованием таблиц изображений.
3. Расчёт принуждённого процесса любым способом.
4. Нахождение постоянных интегрирования, для чего используются две теоремы:
- напряжение на конденсаторе до коммутации равно напряжению после коммутации(
- ток через индуктивность после коммутации равен току до коммутации .
5. Суммирование принуждённого и свободного токов с учётом постоянных интегрирования.
Пример 9.
Расчёт переходного процесса при включении нагрузки с емкостной нагрузкой под переменное напряжение.
, , , .
1. Составление дифференциального уравнения.
Используя модели (6), (7), (8) и второй закон Кирхгофа (22), нетрудно получить уравнение
,
дифференцирование по даёт каноническую форму уравнения:
.
Характеристическое уравнение получается заменой второй производной на , первой – на , искомого тока – на .
, или .
Данное уравнение имеет два корня, которые при подстановке исходных данных имеют величину
При двух действительных корнях решение однородного дифференциального уравнения имеет вид .
Постоянные интегрирования могут быть найдены из двух начальных условий:
(ток до замыкания цепи отсутствует),
(в момент замыкания возникает ЭДС самоиндукции, препятствующая скачку тока через индуктивность).
Следовательно, , .
Откуда , . Окончательно в данном случае свободный ток определяется выражением: .
Принуждённый ток легко определяется по закону Ома .
A.
Таким образом, полный ток определится выражением
Задание: постройте график i(t) с помощью программы DERIVE.
Дата добавления: 2015-07-24; просмотров: 118 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Несинусоидальные периодические токи и принцип суперпозиции в линейных электрических цепях. | | | Специальные аналоговые функции преобразования переменных токов. |