Читайте также:
|
|
Зависимость поступления солей от интенсивности дыхания является установленным фактом. При замене кислорода азотом не только прекращается поступление, но наблюдается выделение питательных ионов из корня. Ингибиторы процесса дыхания (в частности, цианистый калий) резко тормозят поступление солей. Процесс дыхания может оказывать влияние на поступление солей в нескольких направлениях. Так, в процессе дыхания выделяющийся углекислый газ в водной среде диссоциирует на ионы Н+ и НСО3-. Адсорбируясь на поверхности корня, эти ионы служат обменным фондом для поступающих катионов и анионов. В процессе переноса ионов через мембрану участвуют специфические белки-переносчики, синтез которых находится в зависимости от интенсивности дыхательного процесса. Наконец, энергия, выделяемая в процессе дыхания, непосредственно используется для поступления солей (активное поступление). В этой связи особенно важно, что вещества, нарушающие накопление энергии дыхания в макроэргических фосфорных связях (динитрофенол), также тормозят поступление солей.
Поступление воды и солей во многих случаях идет независимо друг от друга. Сопоставление количества воды, испаренной в процессе транспирации, и количества поступивших солей показывает, что прямой зависимости между этими процессами обычно нет. Так, при выращивании растений в условиях высокой влажности воздуха транспирация резко падает, а поступление солей идет с достаточной интенсивностью. Относительная независимость поступления воды и солей хорошо видна из следующих данных. В молодом возрасте (до фазы выхода в трубку) растения пшеницы поглощают фосфора в 14 раз больше, а в фазу колошения в два раза меньше, чем следовало бы ожидать, исходя из возможного содержания в испарившейся воде. Все же в некоторых случаях увеличение интенсивности транспирации может сказаться положительно на поглощении солей. Известно, что усиление транспирации приводит к ускорению передвижения восходящего тока воды с растворенными солями, что способствует быстрому освобождению от них клеток корня, а следовательно, косвенно ускоряет поглощение. Следует иметь в виду и трудности разграничения влияния транспирации от фотосинтеза. Открытие устьиц вызывает усиление, как того, так и другого процесса. Увеличение интенсивности фотосинтеза приводит к возрастанию содержания углеводов и, как следствие, к увеличению интенсивности дыхания и поступления солей.
Ускорение темпов роста увеличивает использование питательных веществ и тем самым усиливает их поступление. Наряду с этим быстрый рост корневой системы оказывает прямое влияние на поглощение благодаря увеличению поверхности, соприкасающейся с почвой.
4.Механизм и пути поступления минеральных солей через корневую систему
Механизм поглощения солей растительной клеткой уже был подробно рассмотрен. В данном разделе мы остановимся на особенностях поглощения солей, характерных для корневой системы в целом.
Поступление питательных солей в корневую систему носит частично активный характер, связанный с метаболизмом. Об этом свидетельствуют следующие особенности поступления: способность растений к избирательному концентрированию веществ; относительная независимость поступления воды и солей; зависимость от дыхания и фотосинтеза; ускорение процесса под влиянием температуры и света. Необходимо учитывать, что часто трудно провести разницу между пассивным (не связанным с затратой энергии) и активным (связанным с затратой энергии) поступлением.
Как уже разбиралось, в корневой системе различают два объема — апопласт и симпласт. Тот факт, что оба эти объема участвуют в поглощении солей, был доказан в опытах с меченой серой. Отрезанные корневые системы ячменя погружали в раствор, содержащий сульфат (SO42-), меченный по сере (35S). В одной пробе корней было определено количество серы, поглощенной в течение одного часа. Другую пробу после часового пребывания в растворе помещали в раствор CaSO4, не содержащий меченой серы. Сначала 35S быстро обменивалась и выходила в окружающий раствор, затем обмен прекращался. В дальнейшем 35S в раствор больше не выходила. Та часть серы, которая быстро обменивалась, была легкодиффундирующая, поступившая пассивным путем. Оставшаяся часть 35S в растении, очевидно, проникла внутрь клетки через мембрану. Таким образом, эти исследования подтвердили наличие свободного пространства корня (апопласта), т. е. той части тканей, в которую вещества вместе с водой могут поступать путем свободной диффузии.
Большинство исследователей считают, что объем свободного пространства составляет 5—10% от всего объема корневой системы. В свободное пространство корня входит поверхность клеточных стенок и система межклетников, сосуды ксилемы. Свободное пространство тканей является внешним по отношению к цитоплазме клеток и внутренним по отношению к органу в целом или к окружающей среде.
Корни поглощают вещества из почвенного раствора (водная фаза) и при контакте с частицами ППК — почвенного поглощающего комплекса (твердая фаза почвы). ППК — это мелкодисперсная коллоидная часть почвы, смесь минеральных (алюмосиликатных) и органических (гуминовых) соединений. Большая часть коллоидов почвы заряжена отрицательно, на их поверхности в адсорбированном (поглощенном) состоянии находятся катионы. Некоторая часть коллоидов почвы в определенных условиях может быть заряжена положительно, поэтому на них в поглощенном адсорбированном состоянии будут находиться анионы. Обменные катионы и анионы — один из важнейших источников питания для растений. Катионы и анионы, находящиеся в поглощенном состоянии на частицах почвенного поглощающего комплекса, могут обмениваться на ионы, адсорбированные на поверхности клеток корня. Так может осуществляться поступление катионов К+, Са2+, Na+ в обмен на протоны, а также анионов NO3-, PO43- и других в обмен на НСО3- или анионы органических кислот. Особенно эффективно идет поглощение при контактном обмене, при котором происходит обмен ионами без перехода их в раствор.
Поглощенные ионы адсорбируются на поверхности клеточных оболочек ри-зодермы. Из адсорбированного состояния ионы могут по коре корня передвигаться двумя путями: по апопласту и симпласту. При поступлении в симпласт ионы проникают через мембрану и далее передвигаются по плазмодесмам к сосудам ксилемы. Однако такие большие молекулы как белки не могут преодолеть пространство в плазмодесмах, поэтому имеются специальные механизмы. Поступление ионов через мембрану происходит с помощью переносчиков как пассивно, по градиенту электрохимического потенциала, так и активно, с использованием метаболической энергии. Механизм этого процесса и роль транспортных белков подробно разбирались выше.
Ток воды с растворенными веществами, движущийся по свободному пространству (апопласту), как бы омывает все клетки коры. На всем этом пути могут наблюдаться адсорбция веществ клеточными стенками, поступление ионов в клетки через соответствующие мембраны и включение их в обмен веществ, т. е. метаболизация. Необходимо учесть, что на пути движения по апопласту имеется преграда в виде клеток эндодермы с поясками Каспари. Передвижение через клетки эндодермы возможно, по-видимому, только через цитоплазму. Даже если признать наличие в стенках клеток эндодермы промежутков для свободной диффузии, то они настолько малы, что вещества не могут через них проникнуть. В связи с этим перенос ионов через мембраны клеток эндодермы необходим и также осуществляется с помощью переносчиков. В целом между I апопластом и симпластом в корневой системе происходит непрерывное взаимодействие и обмен питательными солями. По мнению некоторых исследователей, основным для транспорта ионов является симпластный путь, отличающийся от апопластного большей эффективностью и возможностью осуществлять метаболическую регуляцию. В осуществлении этого большая роль принадлежит осморегулирующей функции вакуолей.
Вопрос, что является движущей силой, заставляющей клетки корня секретировать ионы в сосуды ксилемы, является спорным. Имеется мнение, что клетки, расположенные около сосудов ксилемы, обладают более низкой метаболической активностью по сравнению с более удаленными благодаря меньшему содержанию в них кислорода. В силу низкой интенсивности дыхания эти клетки не удерживают соли и отдают их в сосуды ксилемы. Затем соли вместе с водой благодаря градиенту водного потенциала поднимаются по сосудам вверх (массовый ток). Последние биохимические исследования показывают, что важную роль в переносе ионов в ксилему имеют паренхимные клетки ксилемы. Плазмалемма этих клеток содержит протонные помпы, водные каналы и различные ионные каналы, которые специализированы в поступлении и отдаче веществ. Так, в паренхиме идентифицированы два типа ионных каналов: К-специфичные и неспецифичные. Эти каналы регулируются благодаря мембранному потенциалу и концентрации калия. Из этих данных следует, что транспорт ионов из паренхимы в сосуды ксилемы находится под контролем обмена веществ путем регуляции Н+-АТФазы плазмалеммы и ионных каналов.
Дата добавления: 2015-07-20; просмотров: 278 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Влияние внешних условий на поступление солей | | | Роль корней в жизнедеятельности растений |