Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Моделирование неординарных потоков событий

Читайте также:
  1. V1. Алгебра случайных событий.
  2. Алгебра случайных событий
  3. Анализ информационных потоков
  4. Анализ критериев оценки инвестиционных проектов с дисконтированием денежных потоков
  5. Анализ материальных потоков
  6. Атрибуты событий
  7. Атрибуты событий клавиатуры

Если известно, что поток не является ординарным, то необходимо моделировать кроме момента возникновения события еще и число событий, которое могло появиться в этот момент. Например, вагоны на железнодорожную станцию прибывают в составе поезда в случайные моменты времени (ординарный поток поездов). Но при этом в составе поезда может быть разное (случайное) количество вагонов. В этом случае о потоке вагонов говорят как о потоке неординарных событий.

Допустим, что Mk = 10, σ = 4 (то есть, в среднем в 68 случаях из 100 приходит от 6 до 14 вагонов в составе поезда) и их число распределено по нормальному закону. В место, отмеченное (*) в предыдущем алгоритме (см. рис. 28.6), нужно вставить фрагмент, показанный на рис. 28.8.

Рис. 28.8. Фрагмент алгоритма, реализующий неординарный поток случайных событий

Пример 2. Очень полезным в производстве является решение следующей задачи. Каково среднее время суточного простоя оборудования технологического узла, если узел обрабатывает каждое изделие случайное время, заданное интенсивностью потока случайных событий λ 2? При этом экспериментально установлено, что привозят изделия на обработку тоже в случайные моменты времени, заданные потоком λ 1 партиями по 8 штук, причем размер партии колеблется случайно по нормальному закону с m = 8, σ = 2. До начала моделирования T = 0 на складе изделий не было. Необходимо промоделировать этот процесс в течение T н = 100 часов.

На рис. 28.9 представлен алгоритм, генерирующий случайным образом поток прихода партий изделий на обработку и поток случайных событий — выхода партий изделий с обработки.

Рис. 28.9. Алгоритм имитации обработки партий изделий с учетом случайности происходящих событий

На рис. 28.10 показан результат работы алгоритма — моменты времени, когда детали приходили на операцию, и моменты времени, когда детали покидали операцию. На третьей линии видно, сколько деталей стояло в очереди на обработку (лежало на складе узла) в разные моменты времени.

Рис. 28.10. Диаграмма, иллюстрирующая движение изделий через узел обработки

Отмечая для обрабатывающего узла времена, когда он простаивал в ожидании очередной детали (см. на рис. 28.10 участки времени, выделенные красной штриховкой), мы можем посчитать суммарное время простоев узла за все время наблюдения, а затем рассчитать среднее время простоя в течение суток. Для данной реализации это время вычисляется так:

T пр.ср. = 24 · (t 1пр. + t 2пр. + t 3пр. + t 4пр. + … + tN пр.)/ T н.

Задание 1. Меняя величину σ, установите зависимость T пр.ср.(σ). Задавая стоимость за простой узла 100 евро/час, установите годовые потери предприятия от нерегулярности в работе поставщиков. Предложите формулировку пункта договора предприятия с поставщиками «Величина штрафа за задержку поставки изделий».

Задание 2. Меняя величину начального заполнения склада, установите, как изменятся годовые потери предприятия от нерегулярности в работе поставщиков в зависимости от принятой на предприятии величины запасов.


Дата добавления: 2015-07-26; просмотров: 58 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Пуассоновский поток| Действие третье.

mybiblioteka.su - 2015-2024 год. (0.006 сек.)