Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Историческая справка. Содержание

Читайте также:
  1. Вопрос 1 Предмет философии и его историческая динамика. Природа философских проблем. Структура философского знания.
  2. Вопрос 57 Историческая эволюция понятия техники. Инженерная философия техники
  3. Историческая жанровая генерализация
  4. Историческая память
  5. Историческая перспектива
  6. Историческая роль и недостатки теорий физиократов
  7. Историческая справка

Содержание

Введение

Глава I. Основная часть

1. История

2. Непрерывные дроби – общие сведения

3. Мотивация

Приложения

1. Свойства золотого сечения

2. Теория календаря

3. Решение сравнений первой степени

Заключение

Используемая литература

 

 

Введение

 

Целью моей исследовательской работы является теория цепных дробей. В ней я попытаюсь раскрыть свойства подходящих дробей, особенности разложения действительных чисел в неправильные дроби, погрешности, которые возникают в результате этого разложения, и применение теории цепных дробей для решения ряда алгебраических задач.

Цепные дроби были введены в 1572 году итальянским математиком Бомбелли. Современное обозначение непрерывных дробей встречается у итальянского математика Катальди в 1613 году. Величайший математик XVIII века Леонардо Эйлер первый изложил теорию цепных дробей, поставил вопрос об их использовании для решения дифференциальных уравнений, применил их к разложению функций, представлению бесконечных произведений, дал важное их обобщение.

Работы Эйлера по теории цепных дробей были продолжены М. Софроновым (1729-1760), академиком В.М. Висковатым (1779-1819), Д. Бернулли (1700-1782) и др. Многие важные результаты этой теории принадлежат французскому математику Лагранжу, который нашел метод приближенного решения с помощью цепных дробей дифференциальных уравнений.

Задачи:

1. Найти информацию о непрерывных дробях.

2. Понять, что такое непрерывные дроби.

3. Создать отчет, содержащий подробное описание проделанной работы (исследовательская работа).

 

Методы исследования:

1. Анализ

2. Подбор информации

 

 

Глава 1.

Историческая справка

Античные математики умели представлять отношения несоизмеримых величин в виде цепочки последовательных подходящих отношений, получая эту цепочку с помощью алгоритма Евклида. По-видимому, именно таким путём Архимед получил приближение — это 12-я подходящая дробь для или от 4-й подходящей дроби для .

В V веке индийский математик Ариабхата применял аналогичный «метод измельчения» для решения неопределённых уравнений первой и второй степени. С помощью этой же техники было, вероятно, получено известное приближение для числа π (355/113). В XVI веке Рафаэль Бомбелли извлекал с помощью цепных дробей квадратные корни (см. его алгоритм).

Начало современной теории цепных дробей положил в 1613 году Пьетро Антонио Катальди. Он отметил основное их свойство (положение между подходящими дробями) и ввёл обозначение, напоминающее современное. Позднее его теорию расширил Джон Валлис, который и предложил термин «непрерывная дробь». Эквивалентный термин «цепная дробь» появился в конце XVIII века.

Применялись эти дроби в первую очередь для рационального приближения вещественных чисел; например, Христиан Гюйгенс использовал их для проектирования зубчатых колёс своего планетария. Гюйгенс уже знал, что подходящие дроби всегда несократимы и что они представляют наилучшее рациональное приближение.

В XVIII веке теорию цепных дробей в общих чертах завершили Леонард Эйлер и Жозеф Луи Лагранж.

2.Непрерывные дроби – общие сведения

Последовательность, каждый член которой является обычной дробью, порождает непрерывную (или цепную) дробь, если ее второй член прибавить к первому, а каждую дробь, начиная с третьей, прибавить к знаменателю предыдущей дроби. Например, последовательность 1, 1/2, 2/3, 3/4,..., n/(n + 1),... порождает непрерывную дробь

где многоточие в конце указывает на то, что процесс продолжается бесконечно. В свою очередь непрерывная дробь порождает другую последовательность дробей, называемых подходящими. В нашем примере первая, вторая, третья и четвертая подходящие дроби равны

и

Их можно построить по простому правилу из последовательности неполных частных 1, 1/2, 2/3, 3/4,.... Прежде всего выпишем первую и вторую подходящие дроби 1/1 и 3/2. Третья подходящая дробь равна (21 + 33)/(21 + 32) или 11/8, ее числитель равен сумме произведений числителей первой и второй подходящих дробей, умноженных соответственно на числитель и знаменатель третьего неполного частного, а знаменатель равен сумме произведений знаменателей первого и второго неполных частных, умноженных соответственно на числитель и знаменатель третьего неполного частного. Четвертая подходящая дробь получается аналогично из четвертого неполного частного 3/4 и второй и третьей подходящих дробей: (33 + 411)/(32 + 48) или 53/38. Следуя этому правилу, находим первые семь подходящих дробей: 1/1, 3/2, 11/8, 53/38, 309/222, 2119/1522 и 16687/11986. Запишем их в виде десятичных дробей (с шестью знаками после запятой): 1,000000; 1,500000; 1,375000; 1,397368; 1,391892; 1,392247 и 1,392208. Значением нашей непрерывной дроби будет число x, первые цифры которого 1,3922. Подходящие дроби являются лучшим приближением числа x. Причем они поочередно оказываются то меньше, то больше числа x (нечетные – больше x, а четные – меньше).

Чтобы представить отношение двух положительных целых чисел в виде конечной непрерывной дроби, нужно воспользоваться методом нахождения наибольшего общего делителя. Например, возьмем отношение 50/11. Так как 50 = 411 + 6 или 11/50 = 1/(4 + 6/11), и, аналогично, 6/11 = 1/(1 + 5/6) или 5/6 = 1/(1 + 1/5), получаем:

Непрерывные дроби используются для приближения иррациональных чисел рациональными. Предположим, что x – иррациональное число (т.е. непредставимо в виде отношения двух целых чисел). Тогда, если n0 – наибольшее целое число, которое меньше x, то x = n0 + (x – n0), где x – n0 – положительное число меньше 1, поэтому обратное ему число x1 больше 1 и x = n0 + 1/x1. Если n1 – наибольшее целое число, которое меньше x1, то x1 = n1 + (x1 – n1), где x1 – n1 – положительное число, которое меньше 1, поэтому обратное ему число x2 больше 1, и x1 = n1 + 1/x2. Если n2 – наибольшее целое число, которое меньше x2, то x2 = n2 + 1/x3, где x3 больше 1, и т.д. В результате мы шаг за шагом находим последовательность неполных частных n0, 1/n1, 1/n2,... непрерывной дроби, являющихся приближениями x.

Поясним сказанное на примере. Предположим, что , тогда

Первые 6 подходящих дробей равны 1/1, 3/2, 7/5, 17/12, 41/29, 99/70. Записанные в виде десятичных дробей они дают следующие приближенные значения : 1,000; 1,500; 1,400; 1,417; 1,4137; 1,41428. Непрерывная дробь для имеет неполные частные 1, 1/1, 1/2, 1/1, 1/2, 1/1,.... Иррациональное число является корнем квадратного уравнения с целочисленными коэффициентами в том и только в том случае, если неполные частные его разложения в непрерывную дробь периодичны.

Непрерывные дроби тесно связны со многими разделами математики, например с теорией функций, расходящимися рядами, проблемой моментов, дифференциальными уравнениями и бесконечными матрицами. Если x – радианная мера острого угла, то тангенс угла x равен значению непрерывной дроби с неполными частными 0, x/1, x2/3, x2/7, x2/9,..., а если x – положительное число, то натуральный логарифм от 1 + x равен значению непрерывной дроби с неполными частными 0, x/1, 12x/2, 12x/3, 22x/4, 22x/5, 32x/6,.... Формальным решением дифференциального уравнения x2dy/dx + y = 1 + x в виде степенного ряда является расходящийся степенной ряд 1 + x – 1!x2 + 2!x3 – 3!x4 +.... Этот степенной ряд можно преобразовать в непрерывную дробь с неполными частными 1, x/1, x/1, 2x/1, 2x/1, 3x/1, 3x/1,..., а ее в свою очередь использовать для получения решения дифференциального уравнения x2dy/dx + y = 1 + x.


Дата добавления: 2015-07-18; просмотров: 216 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Исследовательская работа| Мотивация.

mybiblioteka.su - 2015-2024 год. (0.007 сек.)