Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Образование и строение мицелл ПАВ. Мицеллы Гартли. Мицеллы Мак-Бена. Гелеобразные структуры ПАВ.

Читайте также:
  1. III. Органы и структуры эмбриона
  2. Ill ОРГАНИЗАЦИОННОЕ СТРОЕНИЕ ПАРТИИ. ВНУТРИПАРТИЙНАЯ ДЕМОКРАТИЯ
  3. NADPH-оксидаза – строение, биологические функции.
  4. V. Выкладывание из синих и красных фишек прямых слогов и их преобразование.
  5. V. Сообразование с Божественной волей - великое благо.
  6. Z-преобразование синусной компоненты выходного сигнала связано с Z-преобразованием входного сигнала следующим соотношением
  7. А — построение линий тока; б — фрагмент гидродинамической сетки; 1 — линии тока; 2 — гидроизогипсы; 3 — ячейки сетки; 4 — полоса тока

Концентрация ПАВ, при которой в растворе возникают мицеллы, называется критической концентрацией мицеллообразования (ККМ). Строение и свойства мицелл ПАВ обусловленымежмолекулярными взаимодействиями между компонентами системы.

Большинство экспериментальных данных свидетельствует о том, что вблизи ККМ в водных растворахмицеллы представляют собой сферические образования как в случае катион- и анионактивных, так и неионогенных ПАВ. При образовании мицелл в полярном растворителе, например, воде углеводородные цепи молекул ПАВ объединяются в компактное ядро, а гидратированные полярные группы, обращенные в сторону водной фазы, образуют гидрофильную оболочку (рис. 2.1, а). Диаметр такой мицеллы равен удвоенной длине молекулы ПАВ, а число агрегации (число молекул в мицелле) составляет от 30 до 2000 молекул. Силы притяжения углеводородных частей молекул ПАВ в водеможно отождествить с гидрофобными взаимодействиями; отталкивание полярных групп приводит к ограничению роста мицелл. В неполярных растворителях ориентация молекул ПАВ противоположна, т. е. углеводородный радикал обращен к неполярной жидкости (рис. 2.1, б).

Между молекулами ПАВ в адсорбционном слое и в растворе, а также между молекулами ПАВ, входящими в составе мицелл, существует динамическое равновесие (рис. 2.2).



Форма мицелл и их размеры не изменяются в довольно широком интервале концентраций. Однако с ростом содержания ПАВ в растворе начинает проявляться взаимодействие между мицеллами и при концентрациях, превышающих ККМ в 10 и более раз, они укрупняются, образуя вначале мицеллы цилиндрической формы, а затем при более высоких концентрациях – палочкообразные, дискообразные и пластинчатые мицеллы с резко выраженной анизометрией. При еще более высоких значениях концентрации ПАВ в растворах возникают пространственные сетки, система становится структурированной.

Величина ККМ – важнейшая характеристика ПАВ, зависящая от многих факторов: длины и степени разветвления углеводородного радикала, присутствия примесей, рН раствора, соотношения между гидрофильными и гидрофобными свойствами ПАВ. Чем длиннее углеводородный радикал и слабее полярная группа, тем меньше величина ККМ. При концентрации ПАВ выше критической, соответствующей ККМ, резко изменяются физико-химические свойства, а на кривой свойство-состав появляется излом. Поэтому большинство методов определения ККМ основано на измерении какого-либо физико-химического свойства – поверхностного натяжения, электрической проводимости, показателя преломления, осмотического давления и др. – и установлении концентрации, при которой наблюдается резкое изменение этого свойства.

Так, изотермы поверхностного натяжения s растворов коллоидных ПАВ вместо обычного плавного хода, описываемого уравнением Шишковского, обнаруживают при ККМ излом (рис. 2.3). При дальнейшем увеличении концентрации выше ККМ значения поверхностного натяжения остаются практически неизменными.

Кривая зависимости удельной электрической проводимости æ от концентрации с ионогенных коллоидных ПАВ при ККМ имеет резкий излом (рис. 2.4).


Одним из характерных свойств растворов коллоидных ПАВ, связанных с их мицеллярным строением является солюбилизация – растворение в растворах коллоидных ПАВ веществ, которые в данной жидкости обычно нерастворимы. Механизм солюбилизации заключается в проникновении неполярных молекул веществ, добавленных в раствор ПАВ, в неполярное ядро мицеллы (рис. 2.5), или наоборот. При этом углеводородные цепи р аздвигаются, и объем мицеллы увеличивается. В результате солюбилизации в водных растворах ПАВ растворяются углеводородные жидкости: бензин, керосин, а также жиры, которые нерастворимы в воде. Исключительно большую солюбилизирующую активность имеют соли желчных кислот – холат и дезоксихолат натрия, которые солюбилизуют и эмульгируют жиры в кишечнике.

Солюбилизация является важным фактором моющего действия ПАВ. Как правило, частицы загрязняющих веществ гидрофобны и не смачиваются водой. Поэтому даже при высокой температуре моющее действие воды очень мало и для его увеличения добавляют коллоидные ПАВ. При контакте моющего средства с загрязненной поверхностью молекулы ПАВ образуют адсорбционный слой на частицах грязи и очищаемой поверхности. Молекулы ПАВ постепенно проникают между частицами загрязнения и поверхностью, способствуя отрыванию частиц грязи (рис. 2.6). Загрязняющее вещество попадает внутрь мицеллы и больше не может оседать на отмываемой поверхности.

Диаметр мицеллы Гартли равен удвоенной длине молекулы ПАВ.

Число молекул ПАВ, составляющих мицеллу, называется числом ассоциации n. Это число быстро растет в узком интервале концентраций ПАВ обычно от 20 до 100 (иногда и более).

Для ионогенных ПАВ n увеличивается при понижении температуры и добавлении электролитов.

Для неионогенных ПАВ повышение температуры приводит к увеличению n, а введение электролитов на число ассоциации не влияет.

Сумма молекулярных масс всех молекул в мицелле называется мицеллярной массой.

При достижении определенной концентрации сферические мицеллы начинают взаимодействовать между собой, что приводит к их деформации. Мицеллы стремятся принять цилиндрическую, дискообразную, палочкообразную, пластинчатую формы. Такие мицеллы называются мицеллами Мак-Бена.

При концентрациях в 10-50 раз больших ККМ, мицеллы принимают цепочечную ориентацию и вместе с молекулами растворителя образуют жидкокристаллическую структуру.

При дальнейшем увеличении концентрации ПАВ жидкокристаллическая структура переходит в гелеобразную, а затем в твердокристаллическую.

В растворах ПАВ количество вещества в мицеллярной форме может во много раз превышать его количество в молекулярном состоянии. Эти формы находятся в равновесии, состояние которого зависит от концентрации:


Дата добавления: 2015-07-15; просмотров: 1128 | Нарушение авторских прав


Читайте в этой же книге: Теория строения двойного электрического слоя ДЭС Штерна. | Электрокинетический потенциал. Факторы влияющие на его величину. | Получение коллоидных систем, методом диспергирования. Примеры диспергирования. | Приемы конденсации. | Написать формулы мицелл золей и отметить знак заряда частиц. Указать какие ионы в данной мицелле потенциалопределяющие. | Кинетическая и агрегативная устойчивость коллоидных систем. | Кинетическая устойчивость коллоидных систем и ее количественная характеристика. | Факторы стабилизации коллоидной системы (сольватный, электростатический, структурно-механический, энтропийный) | Коагуляция золей электролитами. Правило электролитной коагуляции. | Физическая теория коагуляции ДЛФО (Дерягина-Ландау-Фервея-Овербека) |
<== предыдущая страница | следующая страница ==>
Лиофильные дисперсные системы на основе ПАВ. Условия их получения.| Критическая концентрация мицеллообразования. Методы ее определения.

mybiblioteka.su - 2015-2025 год. (0.007 сек.)