Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Энергетические затраты на синтез белка.

Читайте также:
  1. IV Расчет количеств исходных веществ, необходимых для синтеза
  2. Алгоритм синтеза счетчика
  3. Аммиактың алмасуы. Азоттық алмасудың соңғы өнімдері. Аммиактың залалсыздануы. Мочевинаның биосинтезі.
  4. Анализ и Синтез
  5. Анализ и синтез слогов
  6. Анализ «затраты- выпуск» в системе экономического равновесия
  7. Анаэробные пути ресинтеза АТФ

Энергетика биосинтеза белка. Еще одной очень важной стороной биосинтеза белка является его энергетика. Любой синтетический процесс представляет собой эндотермическую реакцию и, следовательно, нуждается в затрате энергии. Биосинтез белка представляет цепь синтетических реакций: 1) синтез и-РНК; 2) соединение аминокислот с т-РНК; 3) "сборку белка". Все эти реакции требуют энергетических затрат. Энергия для синтеза белка доставляется реакцией расщепления АТФ. Каждое звено биосинтеза всегда сопряжено с распадом АТФ.

Наряду с проблемой синтеза белка основным вопросом физиологии клетки является вопрос об источниках энергии.

 

Все те синтетические процессы, которые мы только что рассмотрели, протекают с затратой энергия. Энергия необходима и для ряда других жизненных процессов, в частности движения. В отношении клетки справедливо будет утверждение, что самосохранение ее сложной структуры и основные жизненные функции осуществляются лишь благодаря непрерывному потреблению энергии. Где же источники этой энергии? В каких формах происходит превращение энергии в клетке?

Основным источником энергии в клетке являются процессы, связанные в конечном счете с окислением углеводов и других органических веществ вплоть до образования углекислого газа и воды. Наряду с окислением источником энергии могут являться и расщепительные анаэробные процессы, ведущие к образованию из более сложных органических соединений (например, глюкозы) менее сложных (например, молочной кислоты). Материальным субстратом, на котором протекают окислительные процессы, служат митохондрии. Однако нужно подчеркнуть, что окислительные процессы в клетке с химической стороны протекают совсем не так, как горение органических тел на воздухе, хотя и в том и в другом случае конечные продукты одинаковы — углекислый газ и вода. Окисление в клетке протекает при температурах относительно низких, при которых вне организма органические вещества не окисляются. Процессы, протекающие в живой клетке, обусловлены наличием сложной системы ферментов (органических катализаторов), каждый из которых обусловливает строго определенную реакцию. Процесс этот очень сложен и состоит из ряда этапов. Во время первого этапа углевод (глюкоза), обладающий шестью атомами углерода, дает начало двум трехуглеродным молекулам молочной кислоты. На втором этапе, слагающемся из множества промежуточных звеньев, рассматривать которые мы не имеем здесь возможности (эта серия последовательных превращений известна под названием цикла Кребса), часть вещества дает начало углекислому газу и воде.

Все эти превращения связаны с освобождением энергии. Одной из самых замечательных сторон этого процесса является связь окисления с фосфорилированием.

Под фосфорилированием понимают процесс образования молекул особого органического вещества — а д е н озинтрифосфата (сокращенно — АТФ), в состав молекулы которого входят три фосфатные группы (фосфатная группа — это атом фосфора, соединенный с атомами кислорода и гидроксильной группой). Две фосфатные группы АТФ соединены с остальной частью молекулы особой химической связью, носящей название макроэргической, что означает «богатая энергией». Один из фосфатных остатков может легко отделяться от АТФ, и, высвобождая энергию, АТФ при этом переходит в аденозиндифосфат (АДФ), который гораздо беднее химической энергией, чем АТФ. За счет энергии, освобождаемой при окислении, АДФ вновь может подвергаться фосфорилированию, в результате чего происходит присоединение фосфатной группы и восстанавливается макроэргическая связь.

АТФ, таким образом, можно рассматривать как богатую энергией «заряженную» форму, тогда как АДФ — как «разряженную», относительно более бедную энергией форму аденозинфосфата. АТФ в клетке является своеобразным химическим аккумулятором энергии, за счет которого выполняется самая различная работа: механическая, химическая (в том числе синтез белков), осмотическая, электрическая.

Мы видим, таким образом, что в животных клетках в ходе сложной цепи превращений, из которых слагается дыхание, энергия, заключенная в питательных веществах, в результате окисления расходуется на построение АТФ из АДФ. Если этим процессам дать количественное выражение, то оказывается, что немного более половины высвобождаемой при окислении энергии идет на фосфорилирование, на «зарядку» аденозинфосфатов — этих замечательных органических аккумуляторов энергии.

Хорошо известно, что животный организм не способен создавать органические вещества из неорганических. В качестве пищи животное получает органические вещества, о судьбе которых в клетке мы только что говорили. Лишь зеленое растение при помощи хлорофилла создает органические вещества из неорганических в результате как воздушного, так и минерального питания из почвы. Эти процессы требуют затраты энергии. Источник ее — солнечный луч. Энергия солнца переходит в потенциальное состояние в форме органических соединений, создаваемых растением. Эта энергия с пищей передается животному, где она претерпевает ряд превращений, в которых особо важная роль принадлежит АТФ — органическому аккумулятору энергии в клетке.


Дата добавления: 2015-07-16; просмотров: 1295 | Нарушение авторских прав


Читайте в этой же книге: Генетический код: основные характеристики. | Биосинтез белка. Белок-синтезирующий аппарат клетки. | Аминоацил-тРНК-синтетаза | Инициация трансляции. Белковые факторы инициации. Образование функционально активной 70S-рибосомы | Элонгация трансляции. Белковые факторы элонгации. Последовательность событий в процессе элонгации. Элонгация – циклический процесс. |
<== предыдущая страница | следующая страница ==>
Точность процесса трансляции.| Детство

mybiblioteka.su - 2015-2024 год. (0.007 сек.)