Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Сложение гармонических колебаний одного направления.

Читайте также:
  1. Cocтoяниe международного туризмa в Рecпубликe Кaзaхcтaн
  2. IV.3. Расчёт гармонических составляющих выходного тока
  3. IX Международного конкурса детского творчества
  4. Quot;Формирование" членов коллектива для свободного проявления инициативы.
  5. Z-преобразование синусной компоненты выходного сигнала связано с Z-преобразованием входного сигнала следующим соотношением
  6. А) коммуникации - это доведение информации от одного человека до другого или групп людей с целью взаимопонимания, позволяющего повысить качество принимаемых решений;
  7. Анализ одного из стихотворений русских поэтов XIX в., античности.

1. Сложение двух колебаний одного направления (сонаправленных колебаний)

можно провести с помощью метода векторных диаграмм (Рисунок 9) вместо сложения двух уравнений.

На Рисунке 2.1 показаны векторы амплитуд А 1(t) и А 2(t) складываемых колебаний в произвольный момент времени t, когда фазы этих колебаний соответственно равны и . Сложение колебаний сводится к определению . Воспользуемся тем фактом, что на векторной диаграмме сумма проекций складываемых векторов равна проекции векторной суммы этих векторов.

Результирующему колебанию соответствует на векторной диаграмме вектор амплитуды и фаза .

Рисунок 2.1 – Сложение сонаправленных колебаний.

Величина вектора А (t) может быть найдена по теореме косинусов:

.

Фаза результирующего колебания задается формулой:

.

Если частоты складываемых колебаний ω1 и ω2 не равны, то и фаза φ(t), и амплитуда А (t) результирующего колебания будут изменяться с течением времени. Складываемые колебания называются некогерентными в этом случае.

2. Два гармонических колебания x1 и x2 называются когерентными, если разность их фаз не зависит от времени:

.

Но так как , то для выполнения условия когерентности двух этих колебаний должны быть равны их циклические частоты .

Амплитуда результирующего колебания, полученного при сложении сонаправленных колебаний с равными частотами (когерентных колебаний) равна:

.

Начальную фазу результирующего колебания легко найти, если спроектировать векторы А 1 и А 2 на координатные оси ОХ и ОУ (см. Рисунок 9):

.

Итак, результирующее колебание, полученное при сложении двух гармонических сонаправленных колебаний с равными частотами, также является гармоническим колебанием .

3. Исследуем зависимость амплитуды результирующего колебания от разности начальных фаз складываемых колебаний.

Если , где n – любое целое неотрицательное число

(n = 0, 1, 2…), то , т.е. результирующая амплитуда будет минимальной. Складываемые колебания в момент сложения находились в противофазе. При результирующая амплитуда равна нулю .

Если , то , т.е. результирующая амплитуда будет максимальной. В момент сложения складываемые колебания находились в одной фазе, т.е. были синфазны. Если амплитуды складываемых колебаний одинаковы , то .

4. Сложение сонаправленных колебаний с неравными, но близкими частотами.

Частоты складываемых колебаний не равны , но разность частот много меньше и ω1, и ω2. Условие близости складываемых частот записывается соотношениями .

Примером сложения сонаправленных колебаний с близкими частотами является движение горизонтального пружинного маятника, жесткость пружин которого немного различна k1 и k2.

Пусть амплитуды складываемых колебаний одинаковы , а начальные фазы равны нулю . Тогда уравнения складываемых колебаний имеют вид:

, .

Результирующее колебание описывается уравнением:

.

Получившееся уравнение колебаний зависит от произведения двух гармонических функций: одна – с частотой , другая – с частотой , где ω близка к частотам складываемых колебаний (ω1 или ω2). Результирующее колебание можно рассматривать как гармоническое колебание с изменяющейся по гармоническому закону амплитудой. Такой колебательный процесс называется биениями. Строго говоря, результирующее колебание в общем случае не является гармоническим колебанием.

Абсолютное значение косинуса взято потому, что амплитуда – величина положительная. Характер зависимости хрез.при биениях показан на Рисунке 2.2.

Рисунок 2.2 – Зависимость смещения от времени при биениях.

Амплитуда биений медленно меняется с частотой . Абсолютное значение косинуса повторяется, если его аргумент изменяется на π, значит и значение результирующей амплитуды повторится через промежуток времени τб, называемый периодом биений (см. Рисунок 12). Величину периода биений можно определить из следующего соотношения:

.

Величина - период биений.

Величина есть период результирующего колебания (Рисунок 2.4).


Дата добавления: 2015-07-15; просмотров: 197 | Нарушение авторских прав


Читайте в этой же книге: КОЛЕБАНИЯ. | Механические гармонические колебания. | Зависимость амплитуды и начальной фазы колебаний от начальных условий. | Свободные гармонические колебания в LC-контуре. | Механические затухающие колебания. | Электромагнитные затухающие колебания. | Характеристики затухающих колебаний. | Общие признаки вынужденных механических и электромагнитных колебаний. | Зависимости амплитуды вынужденных колебаний и сдвига фаз от частоты внешнего воздействия. Резонанс. |
<== предыдущая страница | следующая страница ==>
Графическое изображение гармонических колебаний. Векторная диаграмма.| Сложение взаимно перпендикулярных колебаний.

mybiblioteka.su - 2015-2024 год. (0.012 сек.)