Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Равноточных измерений

Читайте также:
  1. II. Порядок проведения измерений
  2. III. Обработка результатов измерений
  3. III. Порядок проведения экспериментальных измерений
  4. III.2.5. Общая схема физических измерений
  5. Бесконтактные методы и средства измерений
  6. Виды и методы измерений
  7. Виды измерений

Измерения называются равноточными, если они проведены одинаковыми по точности методами, или одним и тем же методом в одинаковых условиях. В результате n измерений некоторой физической величины x, истинное значение которой X0 неизвестно, вследствие наличия случайных погрешностей получается ряд численных значений x1; x2, …, xn, которые в общем случае отличаются друг от друга и от X0.

При обработке результатов этих измерений возникают две задачи:

1. Нахождение по результатам отдельных измерений наилучшей оценки истинного значения, т.е. значения, наиболее близкого к истинному;

2. Определение погрешности полученной оценки.

Для большого числа практических случаев, когда грубые погрешности (промахи) встречаются редко, а случайные погрешности распределены по нормальному закону, наилучшей оценкой измеряемой величины является среднее арифметическое отдельных результатов измерения:

(7)

Отдельные результаты измерений являются случайными величинами, поскольку содержат случайные погрешности ∆Хi:

∆хi = хi – х0

Среднее арифметическое также является случайной величиной, как функция случайных величин. Поэтому абсолютная погрешность среднего арифметического, равная:

также будет случайной.

Это говорит о том, что истинное значение абсолютной погрешности найти невозможно, можно лишь тем или иным способом приближенно оценить ее значение. Например, можно считать, что с определенной вероятностью значение абсолютной погрешности по абсолютной величине будет меньше некоторой заданной величины , т.е.

. (8)

Отсюда следует, что истинное значение измеряемой величины с вероятностью накрывается интервалом , т.е.

. (9)

Интервал называется доверительным, а вероятность - доверительной вероятностью. Очевидно, чем больше - ширина доверительного интервала, тем с большей вероятностью доверительный интервал заключает в себе Х0.

Таким образом, для характеристики случайной погрешности необходимо знать два числа, а именно – величину оценки абсолютной погрешности , которую часто называют просто абсолютной погрешностью, и величину доверительной вероятности.

В качестве ширины доверительного интервала можно взять

- среднеквадратичную погрешность или ее оценку Sx. Для отдельного измерения она равна:

. (10)

Среднее арифметическое имеет меньшее рассеивание и соответственно его среднеквадратичная погрешность будет меньше в раз.

. (11)

В физических, биологических, медицинских, физиологических и др. измерениях обычно пользуются значениями доверительной вероятности = 0,9; = 0,95; =0,99. При заданной доверительной вероятности ширину доверительного интервала (оценку погрешности) удобно находить в виде долей , т.е.:

, (12)

где - коэффициент, зависящий от величины доверительный вероятности и от объема выборки n. При интервал находится по таблице Стьюдента, при n> 30 он очень мало отличается от таблицы нормального распределения и в этом случае может быть найден по той же таблице при n= ∞.

Если взять величину абсолютной погрешности , то вероятность того, что доверительный интервал содержит Х0 будет равна = 0,997. Это очень большая вероятность и поэтому говорят, что с практической уверенностью можно утверждать, что отклонение от Х0 больше чем на невозможно. Это правило известно под названием “правила трех сигм”.

Наряду со среднеквадратичной погрешностью для оценки случайной погрешности пользуются и среднеарифметической погрешностью r, вычисленной по формуле:

. (13)

Все приведенные выше результаты теории случайных погрешностей применимы для характеристики точности измерения лишь в случае, если измерение многократно повторено.

Последовательность действий при оценке истинного значения измеряемой величины и оценки случайной погрешности следующая:

1. находится среднее арифметическое по результатам измерений:

, (14)

2. находится оценка среднеквадратической погрешности отдельного результата измерения:

, (15)

3. находится максимальная абсолютная погрешность отдельного измерения:

, (16)

4. проверяется, все ли результаты измерений укладываются в интервал , если да, то переходим к следующему пункту, если нет, то такое значение отбрасыватся (тем самым мы избавляемся от промахов) и вычисления следует начать сначала.

5. находится среднеквадратическая погрешность среднего арифметического:

(17)

6. находится из таблицы коэффициент по заданным и п и определяется оценка абсолютной погрешности:

(18)

7. записывается результат измерения:

 

(19)

при заданном . Это означает, что с заданной доверительной вероятностью доверительный интервал накрывает , т.е. .

8. если необходимо, то находится относительная погрешность, при этом, поскольку Х0 неизвестно, приближенно его заменяют на :

. (20)


Дата добавления: 2015-07-15; просмотров: 87 | Нарушение авторских прав


Читайте в этой же книге: Измерение. Погрешности измерений | Погрешностей и результатов измерения | И графическое определение погрешностей | Задачи для самостоятельного решения |
<== предыдущая страница | следующая страница ==>
Методика вычислений инструментальных погрешностей прямых (непосредственных) измерений| Измерений

mybiblioteka.su - 2015-2025 год. (0.008 сек.)