Читайте также:
|
|
Для действительной квадратичной формы
где r = rank A.
Для комплексной квадратичной формы
r = rank A.
Для действительных квадратичных форм имеет место закон инерции квадратичных форм: число положительных и число отрицательных квадратов в нормальном виде квадратичной формы не зависит от способа приведения квадратичной формы к нормальному виду с помощью невырожденных линейных преобразований.
Классификация действительных квадратичных форм
Положительно-определенные
Квадратичные формы, для которых таких, что Нормальный вид Квадратичная форма является положительно-определенной тогда и только тогда, когда все ее главные миноры положительны (критерий Сильвестра).
Отрицательно-определенные
Квадратичные формы, для которых таких, что Нормальный вид Квадратичная форма является отрицательно-определенной тогда и только тогда, когда
Положительно-полуопределенные
Квадратичные формы, для которых таких, что Нормальный вид r < n, r = rank A.
Отрицательно-полуопределенные
Квадратичные формы, для которых таких, что Нормальный вид r < n, r = rank A.
Неопределенные
Квадратичные формы, которые принимают как положительные, так и отрицательные значения. Нормальный вид: r = rank A.
Дата добавления: 2015-07-15; просмотров: 110 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Квадратичные формы | | | Прямая на плоскости |