Читайте также: |
|
Брус, нагруженный парами сил, плоскости действия которых перпендикулярны его оси, испытывает деформацию кручения и называется валом. Внутренним силовым фактором в поперечном сечении бруса в этом случае является крутящий момент MK, величину которого определяют методом сечений.
По этому методу крутящий момент в любом сечении вала численно равен алгебраической сумме крутящих моментов, расположенных по одну сторону от этого сечения. Крутящий момен, считается условно положительным, если при взгляде вдоль оси бруса с левого конца мы видим его направленным по ходу часовой стрелки.
Размеры и форма поперечного сечения вала в расчетах на кручение учитываются двумя геометрическими характеристиками: полярным моментом инерции и полярным моментом сопротивления . Для круглого сечения они вычисляются по следующим формулам:
где d - диаметр сечения.
Крутящий момент MK вызывает в сечениях касательные напряжения τ, вычисляемые по формуле
,
где MK - крутящий момент в сечении бруса;
- полярный момент инерции сечения;
- расстояние от центра тяжести сечения до точки, в которой определяются напряжения.
Условие прочности записывается в виде
где - максимальная по модулю величина крутящего момента, определяемого по эпюре ;
- полярный момент сопротивления;
[t] - допускаемое касательное напряжение.
Деформация при кручении характеризуется углом закручивания j(рад):
,
где l - длина бруса;
G - модуль сдвига (модуль упругости второго рода).
Угол закручивания на единице длины бруса называется относительным углом закручивания и вычисляется по формуле
, (рад/м).
Условие жесткости накладывает ограничение на величину относительного угла закручивания:
,
где [q] - допускаемый угол закручивания в град/м.
Условие жесткости имеет вид
.
Дата добавления: 2015-07-14; просмотров: 65 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Пример решения задачи | | | Задача №2. Расчет вала на прочность при кручении |