Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Основные дифференциальные соотношения теории изгиба

Читайте также:
  1. I Предпосылки возникновения норманнской теории.
  2. I. Основные подсистемы автоматизированной информационной системы управления персоналом.
  3. I. Основные положения
  4. I. Основные функции и функциональные задачи управления фирмой.
  5. I. Основные химические законы.
  6. II Философская концепция Э.Фромма: основные позиции, критика и переосмысление источников, открытия.
  7. II. Виды экспертно-аналитической деятельности и ее основные принципы

Пусть брус нагружен произвольным образом распределенной нагрузкой q = f (z) (рис. 5.5, а).

 

 

Рис. 5.5

Выделим из бруса элемент длиной dz и приложим по его краям положительные внутренние усилия (рис. 5.5, б). В пределах малого отрезка dz нагрузку q можно считать распределенной равномерно. Приравняем нулю сумму проекций всех сил на вертикальную ось y и сумму моментов всех сил относительно поперечной оси x, прохо­дящей через точку С (рис. 5.5, б), получим:

Qy + q dz - Qy - d Qy = 0;

Mx + Qy dz + q dz × dz /2 - Mx - d Mx = 0.

Производя упрощения и отбрасывая величины высшего поряд­ка малости, получим:

(5.4)

откуда

. (5.5)

Из (5.4) следует, что при q = const функция Qy будет линей­ной, а функция Mx - квадратичной. Если на каких-то участках бруса распределенная нагрузка отсутствует, т.е. q = 0, то получим, что Qy = const, а Mx является линейной функцией от z.

В сечениях, где приложена сосредоточенная сила, эпюра Qy претерпевает скачок на величину внешней силы. И наконец, в тех сечениях, где Qy принимает нулевое значение и меняет знак, функция Mx достигает экстремальных значений.


Дата добавления: 2015-07-12; просмотров: 76 | Нарушение авторских прав


Читайте в этой же книге: Схема I. Консольная балка (задача №6) | Касательные напряжения при поперечном изгибе. Главные напряжения при изгибе | Решение | Перемещения при изгибе. Расчет балок на жесткость Метод начальных параметров | Решение | Теории прочности | Решение |
<== предыдущая страница | следующая страница ==>
Внутренние усилия в поперечных сечениях бруса| Напряжения при чистом изгибе

mybiblioteka.su - 2015-2025 год. (0.005 сек.)