Читайте также:
|
|
Пороки сердца (vitia cordis) - стойкие дефекты в строении сердца, могущие нарушить его функции. Они могут быть врожденными и приобретенными. Условно приобретенные пороки можно разделить на органические и функциональные. При органических пороках поражается непосредственно клапанный аппарат сердца. Чаще всего это связано с развитием ревматического процесса, реже - септического эндокардита, атеросклерозы, сифилитической инфекции, что приводит к склерозу и сморщиванию створок или к их сращению. В первом случае это ведет к их неполному смыканию (недостаточности клапана), во втором - к сужению выходного отверстия (стенозу). Возможна и комбинация этих поражений, в таком случае говорят о комбинированных пороках.
Принято выделять и так называемые функциональные пороки клапанов, которые возникают только в области атриовентрикулярных отверстий и только в форме клапанной недостаточности вследствие нарушения слаженного функционирования "комплекса" (фиброзное кольцо, хорды, папиллярные мышцы) при неизменных или малоизмененных створках клапана. Клиницисты в подобном случае используют термин "относительная клапанная недостаточность", которая может возникнуть в результате растяжения мышечного кольца атриовентрикулярного отверстия до такой степени, что створки его прикрыть не могут, либо из-за уменьшения тонуса, дисфункции папиллярных мышц, что приводит к провисанию (пролапсу) клапанных створок.
При возникновении порока нагрузка на миокард существенно возрастает. При недостаточности клапанов сердце вынуждено постоянно перекачивать больший, чем в норме объем крови, так как вследствие неполного смыкания клапанов часть крови, выброшенной из полости в период систолы, обратно возвращается в нее в период диастолы. При сужении выходного отверстия из полости сердца - стенозе - резко возрастает сопротивление оттоку крови, причем нагрузка увеличивается пропорционально четвертой степени радиуса отверстия - т. е. если диаметр отверстия уменьшается в 2 раза, то нагрузка на миокард возрастает в 16 раз. В этих условиях, работая в обычном режиме, сердце не способно поддерживать должный минутный объем. Возникает угроза нарушения кровоснабжения органов и тканей организма, причем при втором варианте нагрузки, эта опасность более реальна, поскольку работа сердца против повышенного сопротивления сопровождается значительно большим расходом энергии (работа напряжения), т.е. молекул аденозинтрифосфорной кислоты (АТФ), необходимых для преобразования химической энергии в механическую энергию сокращения и соответственно большим потреблением кислорода, так как основной путь получения энергии в миокарде - окислительное фосфорилирование (так, если работа сердца удвоилась за счет увеличения в 2 раза перекачиваемого объема, то потребление кислорода возрастает на 25%, если же работа удвоилась за счет увеличения в 2 раза систолического сопротивления, то потребление миокардом кислорода увеличится на 200%).
Эта угроза отодвигается включением приспособительных механизмов, условно разделяемых на кардиальные (сердечные) и экстракардиальные (внесердечные).
I. Кардиальные приспособительные механизмы. Их можно разделить на две группы: срочные и долговременные.
1.Группа срочных приспособительных механизмов, благодаря которым сердце может быстро повысить частоту и силу сокращений под влиянием увеличившейся нагрузки.
Как известно, сила сокращений сердца регулируется поступлением ионов кальция через медленные потенциалзависимые каналы, открывающиеся при деполяризации клеточной мембраны под влиянием потенциала действия (ПД). (От длительности ПД и его величины зависит сопряжение возбуждения с сокращением). При увеличении силы и (или) длительности ПД увеличивается число открытых медленных кальциевых каналов и (или) удлиняется среднее время жизни их открытого состояния, что повышает вход ионов кальция за один сердечный цикл, увеличивая тем самым мощность сердечного сокращения. Ведущая роль этого механизма доказывается тем, что блокада медленных кальциевых каналов разобщает процесс электромеханического сопряжения, в результате чего сокращения не наступает, то есть сокращение разобщается с возбуждением, несмотря на нормальный потенциал действия ПД.
Вход внеклеточных ионов кальция, в свою очередь, стимулирует освобождение значительного количества ионов кальция из терминальных цистерн СПР в саркоплазму.("кальциевый залп", в результате которого концентрация кальция в саркоплазме увеличивается
в 100 раз).
Ионы кальция в саркомерах взаимодействуют с тропонином, в результате чего происходит серия конформационных преобразований ряда мышечных белков, которые приводят в итоге к взаимодействию актина с миозином и образованием актомиозиновых мостиков, следствием чего является сокращение миокарда.
Причем число образующихся актомиозиновых мостиков зависит не только от саркоплазматической концентрации кальция, но и от сродства тропонина к ионам кальция.
Увеличение числа мостиков приводит к снижению нагрузки на каждый отдельный мостик и повышению производительности работы, однако это увеличивает потребность сердца в кислороде, поскольку возрастает расход АТФ.
При пороках сердца увеличение силы сердечных сокращений может быть связано:
1) с включением механизма тоногенной дилятации сердца (ТДС), вызванного растяжением мышечных волокон полости сердца за счет увеличения объема крови. Следствием такого растяжения является более сильное систолическое сокращение сердца (закон Франка-Старлинга). Это связано с увеличением продолжительности времени плато ПД, что переводит медленные кальциевые каналы в открытое состояние на более длительный промежуток времени (гетерометрический механизм компенсации).
Второй механизм включается, когда увеличивается сопротивление изгнанию крови и резко увеличивается напряжение при сокращении мышцы, вследствие значительного повышения давления в полости сердца. Это сопровождается укорочением и увеличением амплитуды ПД. Причем повышение силы сердечных сокращений происходит не сразу, а увеличивается постепенно, с каждым последующим сокращением сердца, так как ПД с каждым сокращением увеличивается м укорачивается, в результате с каждым сокращением быстрее достигается тот порог, при котором медленные кальциевые каналы открываются и кальций все в больших количествах входит в клетку, увеличивая мощность сердечного сокращения до тех пор, пока она не достигнет уровня, необходимого для сохранения постоянства минутного объема (гомеометрический механизм компенсации).
Третий механизм включается при активации симпатоадреналовой системы. При угрозе снижения минутного объема и возникновении гиповолемии в ответ на стимуляцию барорецепторов синокаротидной и аортальной зоны ушка правого предсердия, возбуждается симпатический отдел вегетативной нервной системы (ВНС). При ее возбуждении значительно увеличивается сила и скорость сердечных сокращений, уменьшается объем остаточной крови в полостях сердца за счет более полного изгнания ее во время систолы (при обычной нагрузке приблизительно 50% крови остается в желудочке в конце систолы), значительно также увеличивается скорость диастолического расслабления. Несколько увеличивается и сила диастолы, так как это энергозависимый процесс, связанный с активацией кальциевой АТФ-азы, "откачивающей" ионы кальция из саркоплазмы в СПР.
Основной эффект действия катехоламинов на миокард реализутся через возбуждение бета-1-адренорецепторов кардиомиоцитов, что приводит к быстрой стимуляции аденилатциклазы, в результате чего увеличивается количество циклического аденозинмонофосфата (цАМФ), активирующего протеинкиназу, которая фосфорилирует регуляторные белки. Результатом этого является: 1) увеличение количества медленных кальциевых каналов, увеличение среднего времени открытого сотояния канала, кроме того, под влиянием норадреналина увеличивается ПД. Он также стимулирует синтез простагландина J2 эндотелиальными клетками, который увеливает силу сердечного сокращения (через механизм цАМФ) и величину коронарного кровотока. 2) Через фосфорилирование тропонина и цАМФ, ослабляется связь ионов кальция с тропонином С. Через фосфорилирование белка ретикулума фосфоламбана повышается активность кальциевой АТФ-азы СПР, тем самым ускоряется расслабление миокарда и повышается эффективность венозного возврата в полости сердца, с последующим увеличением ударного объема (механизм Франка-Старлинга).
Четвертый механизм. При недостаточности силы сокращений повышается давление в предсердиях. Повышение давления в полости правого предсердия автоматически повышает частоту генерации импульсов в синопредсердном узле и, как следствие, приводит к учащению сердечных сокращений - тахикардии, которая также играет компенсаторную роль в поддержании минутного объема. Она может возникать рефлекторно при повышении давления в полых венах (рефлекс Бейнбриджа), в ответ на повышение уровня кахехоламинов, тиреоидных гормонов в крови.
Тахикардия - наименее выгодный механизм, так как она сопровождается большим расходом АТФ (укорочение диастолы).
Причем этот механизм включается тем раньше, чем хуже адаптирован человек к физическим нагрузкам.
Важно подчеркнуть, что при тренировке изменяется нервная регуляция сердца, что значительно расширяет диапазон его адаптации и благоприятствует выполнению больших нагрузок.
Второй кардиальный механизм компенсации - долговременный (эпигенетический) вид приспособления адаптации сердца, возникающий при длительной или постоянно увеличенной нагрузке. Имеется в виду компенсаторная гипертрофия миокарда. В физиологических условиях гиперфункция не бывает длительной, а при пороках она может длиться многие годы. Важно подчеркнуть, что при физической нагрузке гипертрофия формируется на фоне увеличенного МО и "рабочей гиперемии" сердца, в то время как при пороках это происходит на фоне или неизменного или сниженного (аварийная стадия)
МО. В результате развития гипертрофии сердце посылает нормальное кол-во крови в аорту и легочные артерии, несмотря на порочность сердца.
Дата добавления: 2015-07-12; просмотров: 82 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
ТЕСТОВОЕ ЗАДАНИЕ | | | Стадии течения компенсаторной гипертрофии миокарда. |