Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Активный участок

Читайте также:
  1. Активный кот
  2. АКТИВНЫЙ ПЕРЕПРОСМОТР
  3. Активный секс 171 Ккал в час
  4. Активный транспорт
  5. Активный центр сложных ферментов формируется из
  6. Бюрократия как активный участник реформ

Активный участок полёта космического летательного аппарата, участок полёта с работающими ракетными двигателями. А. у. в большинстве случаев заканчивается выходом на заданную орбиту и отделением космического объекта от ракеты-носителя. Когда расположение места старта не позволяет вывести космический летательный аппарат сразу на заданную орбиту, полёт состоит из нескольких А. у., чередующихся с пассивными участками, на которых ракетные двигатели не работают. Продолжительность А. у. для современных ракет-носителей обычно не превышает 10 —15 мин; протяжённость их существенно меньше, чем участков орбитального полёта. В будущем для космических аппаратов, снабженных электрореактивными двигателями, А. у. могут составлять значительную часть всей траектории полёта.

16 вопрос

Траектория космического аппарата состоит из двух основных участков: активного и

пассивного. Движение на активном участке определяется в основном тягой

реактивных двигателей и притяжением Земли. Пассивный участок траектории

начинается с момента выключения двигателя последней ступени. На пассивном

участке космический аппарат движется под действием притяжения Земли и других тел

Солнечной системы (Луны, Солнца, планет).

При предварительном расчете космических траекторий пользуются приближенной

методикой, которая заключается в следующем. Если скорость аппарата в начале

пассивного участка равна (или больше) параболической скорости (2.20)

относительно Земли, то, если пренебречь возмущениями, космический аппарат будет

двигаться относительно Земли по параболе (или по гиперболе) до тех пор, пока он

не выйдет из сферы действия Земли или не войдет в сферу действия другого

небесного тела.

Сферой действия какого-либо тела с массой т относительно другого тела с массой

т' называется область, внутри которой выполняется условие

где g и g' - гравитационные ускорения в поле тяготения тел т и т', a Dg и Dg' -

возмущающие ускорения соответственно со стороны т' и т. Радиус сферы действия

равен

где r - расстояние между телами т и m'. Например, радиус сферы действия Земли

относительно Солнца - 930 000 км, а радиус сферы действия Луны относительно

Земли - 66 000 км.

Говорить в указанном смысле о сфере действия Солнца можно, строго говоря, лишь

как об области пространства, определенной по отношению к звездам. Ниже мы для

простоты будем понимать под сферой действия Солнца просто область

околосолнечного пространства, за исключением сфер действия планет относительно

Солнца.

Войдя в сферу действия другого небесного тела, космический аппарат будет

двигаться дальше под действием силы притяжения этого тела. Притяжение Земли

перестанет оказывать на движение аппарата существенное влияние и будет играть

роль возмущающей силы.

Характер дальнейшего движения космического аппарата зависит от величины его

скорости на границе сферы действия небесного тела. Если эта скорость

относительно небесного тела равна нулю, то космический аппарат упадет на него.

Если скорость аппарата относительно небесного тела будет больше нуля, но меньше

параболической скорости, то при некоторых дополнительных условиях аппарат может

стать искусственным спутником этого тела и будет обращаться вокруг него по

круговой или эллиптической орбите.

Наконец, если скорость космического аппарата будет равна или больше

параболической скорости, то аппарат, описав относительно небесного тела отрезок

параболы или гиперболы, удалится от него, а затем выйдет из его сферы действия.

Таким образом, космический аппарат может упасть на поверхность любого тела

Солнечной системы, может стать его искусственным спутником и может выйти из

пределов Солнечной системы. В последнем случае он должен иметь на границе сферы

действия Земли с Солнцем скорость, равную или большую параболической скорости

относительно Солнца.

Первой искусственной планетой стала советская космическая ракета, запущенная 2

января 1959 г.

Для того чтобы космический аппарат преодолел притяжение Земли и ушел в

космическое пространство, необходимо в начале пассивного участка сообщить ему

скорость, равную или большую скорости

 

(2.28)

 

где h - линейная высота начальной точки пассивного участка. У поверхности Земли

h = 0 и

Скорость v2к называется второй космической скоростью относительно Земли.

Параболическая скорость на высоте h меньше второй космической скорости v2к и

определяется из уравнения (2.28) или по формуле

Скорость космического аппарата в любой точке на пассивном участке (без учета

возмущений) определяется по формуле

 

(2.29)

 

Для того чтобы космический аппарат, преодолев притяжение Земли и войдя в сферу

действия Солнца, не упал на его поверхность, он должен иметь в этот момент

скорость относительно Солнца, отличную от нуля. Разность гелиоцентрической

скорости аппарата V (определяющей форму его орбиты относительно Солнца) и

гелиоцентрической скорости Земли V3 называется дополнительной скоростью аппарата

Vдоп. С этой скоростью аппарат покидает сферу действия Земли относительно

Солнца.

Начальная скорость космического аппарата v0, согласно формуле (2.29),

определяется из уравнения

Скорость аппарата на расстоянии r = r (где r - радиус сферы действия Земли),

т.е. дополнительная скорость аппарата Vдоп, согласно той же формуле (2.29)

определится из уравнения

Из двух последних уравнений получим

Первый член в правой части, согласно формуле (2.28), равен vп2, а второй при r ®

¥ обращается в нуль. Тогда начальная скорость космического аппарата определится

по формуле

(2.30)

 

Воспользуемся формулой (2.30) и рассчитаем, какова должна быть начальная

скорость, чтобы космический аппарат, запущенный с поверхности Земли, покинул

пределы Солнечной системы. В этом случае гелиоцентрическая скорость аппарата V

должна быть равна параболической скорости относительно Солнца. Круговая скорость

относительно Солнца на расстоянии Земли от Солнца равна Vп = = 42,l км/сек.Следовательно, гелиоцентрическая скорость космического аппарата должна бытьравна V = Vп = 42,1 км/сек.Если за гелиоцентрическую скорость Земли V3 принять ее круговую скорость Vc,т.е.V3 = Vc = 29,8 км/сек, то при выходе космического аппарата из сферы действияЗемли в направлении орбитального движения Земли его дополнительная скоростьбудет такой:Vдоп = Vп - Vc = (42,1 - 29,8) км/сек = 12,3 км/сек.а при выходе в сторону, противоположную орбитальному движению Земли,Vдоп = Vп + Vc = 71,9 км/сек.Тогда начальная скорость космического аппарата, согласно формуле (2.30), впервом случае будет равнаа во втором случаеСледовательно, скорость, при которой запущенный с Земли космический аппаратможет уйти за пределы Солнечной системы, сильно зависит от направления выходааппарата из сферы действия Земли по отношению к направлению орбитальногодвижения Земли и лежит в пределах 16,6 км/сек £ v0 £ 72,8 км/сек.Минимальная скорость v3к = 16,6 км/сек называется третьей космической скоростьюотносительно Земли.

 

Р-12

Тип баллистическая ракета средней дальности
Статус снята с вооружения в июне 1989
Разработчик ОКБ-586
Главный конструктор Янгель, Михаил Кузьмич
Годы разработки Р-12: С 13 августа 1955 Р-12У: С 30 мая 1960
Начало испытаний Р-12: 22 июня 1957 - 27 декабря 1958 Р-12У: декабрь 1961 - декабрь 1962
Принятие на вооружение Р-12: 4 марта 1959 Р-12У: 9 января 1964
Единиц произведено  
Годы эксплуатации 15 мая 1960 - июнь 1989
Основные эксплуатанты РВСН
Модификации Р-12У
Основные технические характеристики: Максимальная дальность: 2080 км Масса ГЧ / Забрасываемый вес: 1600 кг Количество и мощность ББ: 1х2,3 Мт Точность (предельное отклонение): 5 км

Р-12 (индекс ГРАУ — 8К63, «Двина», по классификации МО США и НАТО — SS-4 Sandal (англ. Сандаловое дерево)) — советская жидкостная одноступенчатая баллистическая ракета средней дальности (БРСД) наземного базирования.

Головной разработчик — ОКБ-586 под руководством М. К. Янгеля. Принята на вооружение в 1959 году.


Дата добавления: 2015-07-11; просмотров: 230 | Нарушение авторских прав


Читайте в этой же книге: Классификация | Проект ЛА - сложная модель | Системы Координат | Системы координат применяемые в авиации | Сфера использования, преимущества и недостатки | История | Принцип действия многоступенчатой ракеты | Гравитационный маневр |
<== предыдущая страница | следующая страница ==>
Классификация| Тактико-технические характеристики

mybiblioteka.su - 2015-2025 год. (0.01 сек.)