Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Основные характеристики генеральной и выборочной совокупностей

Читайте также:
  1. I. Основные подсистемы автоматизированной информационной системы управления персоналом.
  2. I. Основные положения
  3. I. Основные функции и функциональные задачи управления фирмой.
  4. I. Основные химические законы.
  5. II Философская концепция Э.Фромма: основные позиции, критика и переосмысление источников, открытия.
  6. II. Виды экспертно-аналитической деятельности и ее основные принципы
  7. II. Основные задачи управления персоналом.
Характеристика Генеральная совокупность Выборочная совокупность
Объем совокупности (численность единиц) N n
Численность единиц, обладающих обследуемым признаком М m
Доля единиц, обладающих обследуемым признаком р= M / N w = m / n
Средний размер признака
Дисперсия признака
Дисперсия доли

Примечание. q — доля единиц, не обладающих обследуемым признаком.

Предельной ошибкой выборочного наблюдения называется разность между величиной средней в генеральной совокупности и ее величиной, вычисленной по результатам выборочного наблюдения:

. (8.1)

В курсах математической статистики доказано, что величина предельной ошибки выборки не должна превышать соотношения:

, (8.2)

где величина μ называется средним квадратическим отклонением выборочной средней от генеральной средней и (средняя ошибка выборки) определяется по зависимости:

, (8.3)

где — среднее квадратическое отклонение в генеральной совокупности;

n — число наблюдений.

t — коэффициент доверия, параметр, указывающий на конкретное значение вероятности того, на какую величину генеральная средняя будет отличаться от выборочной средней.

Как правило, именно произведение коэффициента доверия на среднюю ошибку выборки и рассматривают в качестве предельной ошибки, что является более строгим и правильным, а разность генерального и выборочного среднего рассматривают просто как ошибку выборки, являющуюся случайной величиной.

В некоторых случаях величину называют также средней ошибкой выборки и также обозначают μ.

Соотношение между дисперсиями генеральной и выборочной совокупности выражается формулой:

. (8.4)

Поскольку величина n / n - 1 при достаточно больших n близка к 1, то можно приближенно считать, что выборочная и генеральные дисперсии равны.

Составлены специальные таблицы, связывающие коэффициент доверия t с вероятностью того, что разность между выборочной и генеральной средними не превысит значения средней ошибки выборки μ:

(8.5)

Из первой строки видно, что с вероятностью 0,683 можно утверждать, что разность между выборочной и генеральной средними не превысит одной величины средней ошибки выборки. Другими словами, в 68,3% случаев ошибка репрезентативности не выйдет за пределы ±μ. Далее видно, что чем больше пределы, в которых допускается возможная ошибка, тем с большей вероятностью (т.е. более достоверно) судят о ее величине.

Доверительный интервал. Зная выборочную среднюю величину признака и предельную ошибку выборки , в уточненном только что смысле можно рассчитать границы (пределы), в которых заключена генеральная средняя:

, (8.6)

определяющие доверительный интервал.

8.5.


Дата добавления: 2015-07-11; просмотров: 74 | Нарушение авторских прав


Читайте в этой же книге: Общее понятие о выборочном наблюдении | Генеральная совокупность и выборка | Ошибки выборочного наблюдения | Определение необходимого объема выборки | Понятие малой выборки | Необходимый объем выборки для некоторых способов формирования выборочной совокупности |
<== предыдущая страница | следующая страница ==>
Предельная теорема, предельная ошибка| Формирование выборочной совокупности

mybiblioteka.su - 2015-2024 год. (0.007 сек.)