Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Задание: Описать в тетради физическую организацию микросхемы памяти и кратко описать принцип работы

Читайте также:
  1. Excel. Технология работы с формулами на примере обработки экзаменационной ведомости
  2. I. Задания для самостоятельной работы
  3. I. ПРИНЦИПЫ
  4. I. Ценности и принципы
  5. II. Виды экспертно-аналитической деятельности и ее основные принципы
  6. II. Время начала и окончания работы
  7. II. Выполнение дипломной работы

Общий принцип организации и функционирования микросхем динамической памяти (DRAM) практически един для всех ее типов — как первоначальной асинхронной, так и современной синхронной. Исключение составляют разве что экзотические варианты, тем не менее, существовавшие еще до появления SDRAM, вроде Direct Rambus DRAM (DRDRAM). Массив памяти DRAM можно рассматривать как матрицу (двумерный массив) элементов (строго говоря, это понятие относится к логическому уровню организации микросхемы памяти, рассмотренному в следующем разделе, но его необходимо ввести здесь для наглядности), каждый из которых содержит одну или несколько физических ячеек (в зависимости от конфигурации микросхемы), способных вмещать элементарную единицу информации — один бит данных. Ячейки представляют собой сочетание транзистора (ключа) и конденсатора (запоминающего элемента). Доступ к элементам матрицы осуществляется с помощью декодеров адреса строки и адреса столбца, которые управляются сигналами RAS# (сигнал выбора строки — Row Access Strobe) и CAS# (сигнал выбора столбца — Column Access Strobe).

Из соображений минимизации размера упаковки микросхемы, адреса строк и столбцов передаются по одним и тем же адресным линиям микросхемы — иными словами, говорят о мультиплексировании адресов строк и столбцов (упомянутые выше отличия в общих принципах функционирования микросхем DRDRAM от «обычных» синхронных/асинхронных DRAM проявляются, в частности, здесь — в этом типе микросхем памяти адреса строк и столбцов передаются по разным физическим интерфейсам). Так, например, 22-разрядный полный адрес ячейки может разделяться на два 11-разрядных адреса (строки и столбца), которые последовательно (через определенный интервал времени, см. раздел «Тайминги памяти») подаются на адресные линии микросхемы памяти. Одновременно со второй частью адреса (адреса столбца) по единому командно-адресному интерфейсу микросхемы SDRAM подается соответствующая команда (чтения или записи данных). Внутри микросхемы памяти адреса строки и столбца временно сохраняются в буферах (защелках) адреса строки и адреса столбца, соответственно.

Важно заметить, что с динамической матрицей памяти связан особый буфер статической природы, именуемый «усилителем уровня» (SenseAmp), размер которого равен размеру одной строки, необходимый для осуществления операций чтения и регенерации данных, содержащихся в ячейках памяти. Поскольку последние физически представляют собой конденсаторы, разряжающиеся при совершении каждой операции чтения, усилитель уровня обязан восстановить данные, хранящиеся в ячейке, после завершения цикла доступа (более подробно участие усилителя уровня в цикле чтения данных из микросхемы памяти рассмотрено ниже).

Кроме того, поскольку конденсаторы со временем теряют свой заряд (независимо от операций чтения), для предотвращения потери данных необходимо периодически обновлять содержимое ячеек. В современных типах памяти, которые поддерживают режимы автоматической регенерации (в «пробужденном» состоянии) и саморегенерации (в «спящем» состоянии), обычно это является задачей внутреннего контроллера регенерации, расположенного непосредственно в микросхеме памяти.

Схема обращения к ячейке памяти в самом общем случае может быть представлена следующим образом:

1. На адресные линии микросхемы памяти подается адрес строки. Наряду с этим подается сигнал RAS#, который помещает адрес в буфер (защелку) адреса строки.

2. После стабилизации сигнала RAS#, декодер адреса строки выбирает нужную строку, и ее содержимое перемещается в усилитель уровня (при этом логическое состояние строки массива инвертируется).

3. На адресные линии микросхемы памяти подается адрес столбца вместе с подачей сигнала CAS#, помещающего адрес в буфер (защелку) адреса столбца.

4. Поскольку сигнал CAS# также служит сигналом вывода данных, по мере его стабилизации усилитель уровня отправляет выбранные (соответствующие адресу столбца) данные в буфер вывода.

5. Сигналы CAS# и RAS# последовательно дезактивируются, что позволяет возобновить цикл доступа (по прошествии промежутка времени, в течение которого данные из усилителя уровня возвращаются обратно в массив ячеек строки, восстанавливая его прежнее логическое состояние).

Так выглядела реальная схема доступа к ячейке DRAM в самом первоначальном ее варианте, реализованном еще до появления первых реально используемых микросхем/модулей асинхронной памяти типа FPM (Fast Page Mode) DRAM. Тем не менее, нетрудно заметить, что эта схема является достаточно неоптимальной. Действительно, если нам требуется считать содержимое не одной, а сразу нескольких подряд расположенных ячеек, отличающихся только адресом столбца, но не адресом строки, то нет необходимости каждый раз подавать сигнал RAS# с одним и тем же адресом строки (т.е. выполнять шаги 1-2). Вместо этого, достаточно удерживать сигнал RAS# активным на протяжении промежутка времени, соответствующего, например, четырем последовательным циклам чтения (шаги 3-4, с последующей дезактивацией CAS#), после чего дезактивировать сигнал RAS#. Именно такая схема применялась в асинхронной памяти типа FPM DRAM и более поздней EDO (Enhanced Data Output) DRAM. Последняя отличалась опережающей подачей адреса следующего столбца, что позволяло достичь меньших задержек при операциях чтения.

В современных микросхемах SDRAM схема обращения к ячейкам памяти выглядит аналогично. Далее, в связи с обсуждением задержек при доступе в память (таймингов памяти), мы рассмотрим ее более подробно.


Дата добавления: 2015-07-11; просмотров: 115 | Нарушение авторских прав


Читайте в этой же книге: Задание: Записать в тетрадь технические характеристики модулей памяти | Тактовая частота модулей памяти. | Чтение/запись данных | Соотношения между таймингами | DDR/DDR2 SDRAM: Отличия от SDR SDRAM |
<== предыдущая страница | следующая страница ==>
Задание: записать в тетрадь расшифрованную аббревиатуру SDRAM и дать определение каждому термину| Задание: Описать в тетради логическую организацию микросхемы памяти

mybiblioteka.su - 2015-2025 год. (0.006 сек.)