Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Классификация точек разрыва

Читайте также:
  1. Documentation(customs declarations/immigration forms) заполнение карточек
  2. I.3. Классификация видов корпоративной культуры
  3. II. Точки разрыва 2 рода
  4. Анализ и классификация понятий «легализация преступных доходов», имеющихся в научной литературе
  5. Анализ конфликтных точек и конфликтных ситуаций
  6. Атлас точек
  7. ВЕДОМОСТЬ КООРДИНАТ ТОЧЕК ДИАГОНАЛЬНОГО (РАЗОМКНУТОГО) ТЕОДОЛИТНОГО ХОДА

Непрерывность функции в точке

Пусть функция f(x) определена в некоторой окрестности O(x0) точки x0 (включая саму точку x0).

Функция f(x) называется непрерывной в точке x0, если существует limx → x0 f(x), равный значению функции f(x) в этой точке: lim

x → x0

f(x) = f(x0), (1)

т.е. " O(f(x0)) $ O(x0): x О O(x0) Ю f(x) О O(f(x0)).

Замечание. Равенство (1) можно записать в виде: lim

x → x0

f(x) = f (lim

x → x0

x),

т.е. под знаком непрерывной функции можно переходить к пределу.

Пусть Δx = x − x0 — приращение аргумента, Δy = f(x) − f(x0) — соответствующее приращение функции.

Необходимое и достаточное условие непрерывности функции в точке

Функция y = f(x) непрерывна в точке х0 тогда и только тогда, когда

Lim

Δx → 0

Δy = 0. (2)

Замечание. Условие (2) можно трактовать как второе определение непрерывности функции в точке. Оба определения эквивалентны.

Пусть функция f(x) определена в полуинтервале [x0, x0 + δ).

Функция f(x) называется непрерывной справа в точке x0, если существует односторонний предел lim

x → x0 + 0

f(x) = f(x0).

 

 

Пусть функция f(x) определена в полуинтервале (x0 − δ, x0].

Функция f(x) называется непрерывной слева в точке x0, если существует односторонний предел lim

x → x0 − 0

f(x) = f(x0).

Непрерывность суммы, произведения и частного двух непрерывных функций

Теорема 1. Если функции f(x) и g(x) непрерывны в точке х0, то в этой точке непрерывны f(x) ± g(x), f(x) · g(x), f(x)

g(x)

(g(x0) ≠ 0).

Непрерывность сложной функции

Теорема 2. Если функция u(x) непрерывна в точке х0, а функция f(u) непрерывна в соответствующей точке u0 = f(x0), то сложная функция f(u(x)) непрерывна в точке х0.

Все элементарные функции непрерывны в каждой точке их областей определения.

Локальные свойства непрерывных функций

Теорема 3 (ограниченность непрерывной функции). Если функция f(x) непрерывна в точке x0, то существует окрестность O(x0), в которой f(x) ограничена.

Доказательство следует из утверждения об ограниченности функции, имеющей предел.

Теорема 4 (устойчивость знака непрерывной функции). Если функция f(x) непрерывна в точке x0 и f(x0) ≠ 0, то существует окрестность точки x0, в которой f(x) ≠ 0, причем знак f(x) в этой окрестности совпадает со знаком f(x0).

Классификация точек разрыва

Условие (1) непрерывности функции f(x) в точке x0 равносильно условию f(x0 − 0) = f(x0 + 0) = f(x0), (3)

где f(x 0 − 0) = lim

x → x0 − 0

f(x) и f(x0 + 0) = lim

x → x0 + 0

f(x) — односторонние пределы функции f(x) в точке x0.

При нарушении условия (3) точка x0 называется точкой разрыва функции f(x). В зависимости от вида нарушения условия (3) точки разрыва имеют различный характер и классифицируются следующим образом:

1. Если в точке x0 существуют односторонние пределы f(x0 − 0), f (x0 + 0) и

f(x0 − 0) = f(x0 + 0) ≠ f(x0), то точка х0 называется точкой устранимого разрыва функции f(x) (рис. 1).

Замечание. В точке x0 функция может быть не определена.

2. Если в точке x0 существуют односторонние пределы f(x0 − 0), f (x0 + 0) и

f(x0 − 0) ≠ f(x0 + 0), то точка x0 называется точкой разрыва с конечным скачком функции f(x) (рис.2).

Замечание. В точке разрыва с конечным скачком значение функции может быть любым, а может быть и не определено.

 

Точки устранимого разрыва и конечного скачка называются точками разрыва 1–го рода. Их отличительным признаком является существование конечных односторонних пределов f(x0 − 0) и

f(x0 + 0).

 

3. Если в точке x0 хотя бы один из односторонних пределов f(x0 − 0), f (x0 + 0) равен бесконечности или не существует, то x0 называется точкой разрыва 2–го рода (рис. 3).

 

Если хотя бы один из односторонних пределов f(x0 − 0), f (x0 + 0) равен бесконечности, то прямая x = x 0 называется вертикальной асимптотой графика функции y = f(x).

 

Определение. Функция f(x), определенная в окрестности некоторой точки х0, называется непрерывной в точке х0, если предел функции и ее значение в этой точке равны, т.е.

Тот же факт можно записать иначе:

Определение. Если функция f(x) определена в некоторой окрестности точки х0, но не является непрерывной в самой точке х0, то она называется разрывной функцией, а точка х0 – точкой разрыва.

Определение. Функция f(x) называется непрерывной в точке х0, если для любого положительного числа e>0 существует такое число D>0, что для любых х, удовлетворяющих условию

верно неравенство.

Определение. Функция f(x) называется непрерывной в точке х = х0, если приращение функции в точке х0 является бесконечно малой величиной.

f(x) = f(x0) + a(x)

где a(х) – бесконечно малая при х®х0.


Дата добавления: 2015-07-11; просмотров: 81 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Третий этап - гормонотерапия.| Оценка устойчивости цеха к воздействию ударной волны при взрыве ГВС.

mybiblioteka.su - 2015-2024 год. (0.007 сек.)