Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Теорема о повторении опытов. Формула Бернулли.

Читайте также:
  1. Excel. Технология работы с формулами на примере обработки экзаменационной ведомости
  2. Базовая формула и следствия
  3. Вот эта формула: «Я не есть это тело – я свобода и воля. Мое тело – машина, подчиненная мне».
  4. Вторая теорема Больцано-Коши (о промежуточных значениях непрерывной функции).
  5. Гидротрансформатордыњ пайдалы єсер коэффициенті (ПЄКі) ќандай формуламен есептеледі ?
  6. Для нашего случая . формула соединения – PtF4.
  7. Интегральная теорема Лапласа.

ПОВТОРЕНИЕ НЕЗАВИСИМЫХ ОПЫТОВ. Несколько опытов называются независимыми, если вероятность исхода опыта не зависит от того, какие исходы имели другие опыты. Рассмотрим случай, когда вероятности исходов опытов постоянны и не зависят от номера опыта.

Пусть один тот же опыт проводятся n раз. В каждом опыте некоторые события А1, А2, …, Аr появляется с вероятностями р1, р2, …, рп. Будем рассматривать не результат каждого конкретного опыта, а общее число появлений событий А1, А2, …, Аr .

Рассмотрим случай с двумя возможными исходами опытов, т.е. в результате каждого опыта событие A появляется с вероятностью р и не появляется с вероятностью q=1-p. Вероятность P(n,k) того, что в последовательности из n опытов интересующее нас событие произойдет ровно k раз (безразлично, в какой последовательности), равна (формула Бернулли)

. (4.1)

Следствия из формулы Бернулли.

1. Вероятность того, что событие А наступит менее k раз

(4.2)

2. Вероятность того, что событие наступит более k раз

(4.3)

3. Вероятность того, что в n опытах схемы Бернулли, событие А появится от k1 до k2 раз

. (4.4)

4. Вероятность того, что в n опытах событие А появится хотя бы один раз, определяется формулой

(4.5)

Число к0, которому соответствует максимальная биномиальная вероятность , называется наивероятнейшим числом появления события А. При заданных n и p это число определяется неравенствами: . (4.6)

Билет 22. Локальная приближенная формула Муавра-Лапласа.

Теоремы Муавра-Лапласа. На практике приближенные формулы Муавра-Лапласа применяются в случае, когда p и q не малы, а npq >9.

Локальная теорема Муавра-Лапласа. Если вероятность появления события А в каждом из n независимых испытаний равна одной и той же постоянной р =const (0< р <1), то вероятность того, что во всех этих испытаниях событие А появится ровно k раз, приближенно вычисляется формулой:

, (4.8)

где: , -- кривая Гаусса.

Таблицы значений функции даны в приложениях к учебникам по теории вероятностей

Интегральная теорема Муавра-Лапласа. Пусть вероятность появления события А в каждом из n (n →∞) независимых испытаний равна одной и той же постоянной р (0< р <1), то вероятность того, что во всех этих испытаниях событие А появится не менее k 1 и не более k 2 раз, приближенно вычисляется формулой:

, (4.9)

где

- функция Лапласа,

,

Значения аргументов функции Лапласа для х Î[0,5] даны в приложениях к учебникам по теории вероятностей (Приложение 2 настоящего методического пособия), для x>5 F(x)=1/2.Функция нечетная - F(x)= F(-x).


Дата добавления: 2015-07-14; просмотров: 79 | Нарушение авторских прав


Читайте в этой же книге: Билет 9. Статистическое определение вероятности. Относительная частота. Устойчивость относительной частоты. Примеры. | Алгебра событий | Сигма-алгебра событий. | Диаграммы Эйлера-Венна | Аксиомы вероятностей. | Предмет теории вероятностей | Пространство элементарных исходов. | Задачи на условную вероятность и независимость событий | Билет 18. Умножение вероятностей для произвольного числа событий | Формула полной вероятности. |
<== предыдущая страница | следующая страница ==>
Формула Байеса.| Статья 1

mybiblioteka.su - 2015-2024 год. (0.007 сек.)