Читайте также:
|
|
OLAP (Online Analytical Processing – оперативная аналитическая обработка) – это информационный процесс, который дает возможность пользователю запрашивать систему, проводить анализ и т.д. в оперативном режиме (онлайн). Результаты генерируются в течении секунд.
OLAP системы выполнены для конечных пользователей, в то время как OLTP системы делаются для профессиональных пользователей ИС. В OLAP предусмотрены такие действия, как генерация запросов, запросы нерегламентированных отчетов, проведение статистического анализа и построение мультимедийных приложений.
Для обеспечения OLAP необходимо работать с хранилищем данных (или многомерным хранилищем), а также с набором инструментальных средств, обычно с многомерными способностями. Этими средствами могут быть инструментарий запросов, электронные таблицы, средства добычи данных (Data Mining), средства визуализации данных и др.
В основе концепции OLAP лежит принцип многомерного представления данных. Э. Кодд рассмотрел недостатки реляционной модели, в первую очередь указав на невозможность объединять, просматривать и анализировать данные с точки зрения множественности измерений, то есть самым понятным для корпоративных аналитиков способом, и определил общие требования к системам OLAP, расширяющим функциональность реляционных СУБД и включающим многомерный анализ как одну из своих характеристик.
По Кодду, многомерное концептуальное представление представляет собой множественную перспективу, состоящую из нескольких независимых измерений, вдоль которых могут быть проанализированы определенные совокупности данных. Одновременный анализ по нескольким измерениям определяется как многомерный анализ. Каждое измерение включает направления консолидации данных, состоящие из серии последовательных уровней обобщения, где каждый вышестоящий уровень соответствует большей степени агрегации данных по соответствующему измерению.
Кодд определил 12 правил, которым должен удовлетворять программный продукт класса OLAP. Эти правила:
1. Многомерное концептуальное представление данных.
2. Прозрачность.
3. Доступность.
4. Устойчивая производительность.
5. Клиент – серверная архитектура.
6. Равноправие измерений.
7. Динамическая обработка разреженных матриц.
8. Поддержка многопользовательского режима.
9. Неограниченная поддержка кроссмерных операций.
10. Интуитивное манипулирование данными.
11. Гибкий механизм генерации отчетов.
12. Неограниченное количество измерений и уровней агрегации.
Набор этих требований, послуживший фактическим определением OLAP, следует рассматривать как рекомендательный, а конкретные продукт оценивать по степени приближения к идеально полному соответствию всем требованиям.
Интеллектуальный анализ данных (Data Mining) и знаний (Knowledge Мining). Управление и анализ больших объемов данных (Big data). Системы бизнес-аналитики (Business Intelligence, BI).
Интеллектуальный анализ данных (ИАД) – общий термин для обозначения анализа данных с активным использованием математических методов и алгоритмов (методы оптимизации, генетические алгоритмы, распознавание образов, статистические методы, Data Mining и т.д.), использующих результаты применения методов визуального представления данных.
В общем случае процесс ИАД состоит из трех стадий:
1) выявление закономерностей (свободный поиск);
2) использование выявленных закономерностей для предсказания неизвестных значений (прогнозирование);
3) анализ исключений для выявления и толкования аномалий в найденных закономерностях.
Иногда выделяют промежуточную стадию проверки достоверности найденных закономерностей (стадия валидации) между их нахождением и использованием.
Все методы ИАД по принципу работы с исходными данными подразделяются на две группы:
Методы рассуждений на основе анализа прецедентов – исходные данные могут храниться в явном детализированном виде и непосредственно использоваться для прогнозирования и/или анализа исключений. Недостатком этой группы методов является сложность их использования на больших объемах данных.
Методы выявления и использования формализованных закономерностей, требующие извлечения информации из первичных данных и преобразования ее в некоторые формальные конструкции, вид которых зависит от конкретного метода.
Data Mining (DM)– это технология обнаружения в «сырых» данных ранее неизвестных нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Алгоритмы, используемые в Data Mining, требуют большого количества вычислений, что ранее являлось сдерживающим фактором широкого практического применения этих методов, однако рост производительности современных процессоров снял остроту этой проблемы.
Задачи, решаемые методами DM:
1. Классификация – отнесение объектов (наблюдений, событий) к одному из заранее известных классов.
2. Прогнозирование.
3. Кластеризация – группировка объектов на основе данных, описывающих сущность этих объектов. Объекты внутри кластера должны обладать общими чертами и отличаться от объектов, вошедших в другие кластеры. Чем больше похожи объекты внутри кластера и чем больше отличий между кластерами, тем точнее кластеризация.
4. Ассоциация – выявление закономерностей между связанными событиями.
5. Последовательные шаблоны – установление закономерностей между связанными во времени событиями.
6. Анализ отклонений – выявление наиболее нехарактерных шаблонов.
Решение большинства задач бизнес-анализа сводится к той или иной задаче Data Mining. Например, оценка рисков – решение задачи классификации, сегментация рынка – кластеризации, стимулирование спроса – ассоциации.
Рынок Business Intelligence состоит из 5 секторов:
1. OLAP-продукты;
2. Инструменты добычи данных;
3. Средства построения Хранилищ и Витрин данных (Data Warehousing);
4. Управленческие информационные системы и приложения;
5. Инструменты конечного пользователя для выполнения запросов и построения отчетов.
Классификация BI-систем базируется на методе функциональных задач, где программные продукты каждого класса выполняют определенный набор функций или операций с использованием специальных технологий (приложение А). Как правило, функции BI включают поддержку принятия решений, запросы и отчетность, аналитическую обработку online, статистический анализ, прогнозирование и количественный анализ.
В настоящее время среди лидеров корпоративных BI-платформ можно выделить MicroStrategy, Business Objects, Cognos, Hyperion Solutions, Microsoft, Oracle, SAP, SAS Institute и другие (в приложении Б приведен сравнительный анализ некоторых функциональных возможностей BI-систем).
Дата добавления: 2015-12-08; просмотров: 143 | Нарушение авторских прав