Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Вибір і розрахунок абсорберів для вловлювання газової компоненти в повітрі

Читайте также:
  1. Аналіз альтернатив та вибір стратегії
  2. Аналіз базових умов навчання. Вибір способів актуалізації (формування) базових знань
  3. БОЙОВИЙ РОЗРАХУНОК
  4. Вибір альтернатив, покупка й оцінка покупки
  5. Вибір джерел інформації
  6. Вибір і конструювання системи опалення
  7. Вибір і обґрунтування засобу дослідження

 

5.1. Загальні положення

 

Видалення газової компоненти шкідливої речовини із повітря шляхом абсор­бції засновано на здатності рідин розчиняти гази. У цьому процесі беруть участь дві фази - рідинна і газоподібна. В результаті абсорбції проходить перехід речо­вини із газової в рідку, а при десорбції, навпаки, - із рідинної в газоподібну фазу. Виходячи з цього, абсорбція - це процес поглинання газоподібної компоненти шкі­дливої речовини рідиною, а десорбція - це процес зворотний до попереднього, тобто виділення газу із рідини. Таким чином, абсорбтив - це речовина, яка знахо­диться в газоподібній фазі і в результаті процесу абсорбції переходить в рідину. Якщо в процесі абсорбції газова компонента не переходить в рідину, то вона є газом-носієм або інертним газом. Речовина, яка поглинає газову компоненту назива­ється розчинником або абсорбентом. Процеси абсорбції проходять в апаратах, які називаються абсорберами, і подані на рис. 5.1.

Існують такі поняття процесів вилучення газової компоненти шкідливої речо­вини із повітря: фізична абсорбція і хімічна абсорбція.

В результаті фізичної абсорбції маємо фізичне розчинення абсорбуючої газо­вої компоненти в рідинному розчиннику без супроводу хімічних реакцій.

При хімічній абсорбції газова компонента, яка абсорбується, вступає в хімічну реакцію з поглиначем-розчинником, в результаті чого утворюються нові хімічні сполуки в рідкій фазі.

При фізичній абсорбції поглиначами-розчинниками або сорбентами є вода, а також органічні і неорганічні розчинники, які не вступають в хімічну реакцію із вилученою із повітря газовою компонентою шкідливої речовини, при хімічній абсорбції-водні розчини різних солей і органічних розчинників.

 

 

Н2О+Nа2СО3

 

Рис. 5.1. Насадні абсорбери: а - з суцільним завантаженням;

б - з пошаровим завантаженням насадки

 

5.2. Апарати-абсорбери насадного типу

 

Процеси абсорбції проходять в апаратах-абсорберах колонного типу із різни­ми заповнювачами-насадками [17, 18, 19]. Взаємодія газової компоненти із ріди­ною проходить на рівні плівки, яка утворюється на поверхні насадки при обтіканні її рідиною.

Апарати-абсорбери насадного типу (рис. 5.1) виконані у вигляді циліндра, що є корпусом. В нижній частині встановлюються решітки 1, які є утримувачами наса­дки 2 із її суцільним завантаженням шляхом невпорядкованого засипання або по­шарового укладання з встановленням перерозподільчих пристроїв 4 рідини. Зро­шуюча рідина подається на насадку за допомогою спеціальних зрошуючих при­строїв 3.

Ефективність роботи абсорберів, а також їх гідравлічний опір залежать від правильного вибору типу насадок (рис. 5.2) і їх методу укладання [9, 18, 19].

Застосування насадок в апаратах-абсорберах виконується з метою отриман­ня значної поверхні контакту повітря, яке очищається, із рідиною-поглиначем. Ха­рактеристики насадок, які найбільше розповсюджені і використовуються, наведені в таблиці 5.1 [19].

Важливим фактором для отримання максимальної ефективності очищення повітря в абсорберах є організація подавання рідини в апарат, що диктується рів­номірністю розподілу сорбенту по торцю насадки. З цією метою використовують розподільні плити (рис 5.3), тип яких і конструкція залежать від діаметра апарата (з діаметром до 3 м - суцільні, більшим, ніж 3 м - із окремих секцій) [9].

 

 

 

Рис. 5.2. Типи насадок: а - циліндрична кільцева насадка; б, в - циліндрична кільцева насадка з однією чи двома хрестоподібними перетинками (кільця Лессінга); г, д - циліндрична кільцева насадка з одно - чи двоспіралевими вставками; є - кільцева спіралевидна насадка з перфорацією; ж - сідлоподібна насадка Берля; з - сідлоподібна насадка Інталокса; и - пропелерна

насадка; к - хордова насадка; л - плоскопаралельна насадка; м - блочна насадка різних конфігурацій

 

 

Таблиця 5.1

Характеристика насадок (розміри в міліметрах)

 

Насадка Питома поверхня, а, м23 Вільний об’єм, Е, м33 Еквівалентний діаметр, de, м Насипка, густина, ρ, кг/м3 Кількість в м3, n, шт.
           
Регулярні насадки
Дерев’яні хордові (10х100), крок просвіту:  
    0,55 0,022   -
    0,68 0,042   -
    0,77 0,064   -
Керамічні кільця Рашіга:  
50х50х5   0,735 0,027    
80х80х8   0,72 0,036    
100х100х10   0,72 0,048    
Невпорядковані насадки
Керамічні кільця Рашіга:  
10х10х1,5   0,7 0,006    
15х15х2   0,7 0,009    
25х25х3   0,74 0,015    
35х35х4   0,78 0,022    
50х50х5   0,785 0,035    
Стальні кільця Рашіга:  
10х10х0,5   0,88 0,007    
15х15х0,5   0,92 0,012    
25х25х0,8   0,92 0,017    
50х50х1   0,95 0,035    
Керамічні кільця Палля:  
25х25х3   0,74 0,014    
35х35х4   0,76 0,018    
50х50х5   0,78 0,026    
60х60х6   0,79 0,033    
Стальні кільця Палля:  
15х15х0,4   0,9 0,01    
           
25х25х0,6   0,9 0,015    
35х35х0,8   0,9 0,021    
50х50х1   0,9 0,033    
Керамічні сідла Берля:          
12,5   0,68 0,006    
    0,69 0,011    
    0,69 0,017    
Керамічні сідла Інталокс:          
12,5   0,78 0,005    
    0,77 0,009    
    0,775 0,012    
    0,81 0,017    
    0,79 0,027    

 

 

Рис. 5.3. Розподільні плити абсорберів колонного типу:

а - гладка перфорована; 6 - дрібноперфорована з кільцевим пере­ливом і газопровідними патрубками; в - з донними патрубками; г - з подовженими патрубками, які знімаються; ∂ - з виступними все­редину короткими патрубками; е - комірчаста з виступними всере­дину патрубками і центральним газопровідним штуцером; ж - з кі­льцевим скидом і периферійними отворами; з - з трикутними пере­ливними прорізами і периферійними отворами; и - секторна з пе­реливними прорізами при вершинах трикутних газопровідних патрубків і на бортах секторів
5.3 Розрахунок і конструювання абсорбера колонного типу з шаром насадки

 

Розрахунок абсорбера колонного типу виконується за методикою, приведе­ною в [9, 20]. Метою розрахунку є визначення геометричних розмірів абсорбера, об'єму насадки, яка повинна забезпечити необхідну поверхню контакту повітря із рідиною-сорбентом. На основі геометричних розмірів апарата і об'єму насадки ви­значається висота її завантажування.

Початковими даними для розрахунку є: об'єм газу м3/с, що надходить на очищення, початкова мольна доля компоненти для газової фази, Уп, %; необхідна ступінь очищення повітря від газової компоненти, %, тобто ефективність апара­та; температура повітря, яке очищується, , %; тиск навколишнього середовища, при якому проходить процес очищення повітря, Р, Па.

Необхідною умовою поглинання заданої кількості газової компоненти шкідли­вої речовини (на прикладі сірчистого ангідриду SО2) є визначення і забезпечення поверхні контакту F, м2, за основним рівнянням:

 

, (26)

звідси

, (27)

де - кількість газової компоненти, яка повинна бути абсорбована в апа­раті, кг/год, визначається за формулою:

 


, (28)

 

де - об'єм повітря, яке очищується, м3/с;

- парціальний тиск домішки газової компоненти SО2 на вході в абсорбер, Па, який визначається за формулою:

 

, (29)

 

де - початкова мольна доля газової компоненти в повітрі, %;

- тиск навколишнього середовища, в якому знаходиться апарат, Па;

- газова стала сірчистого ангідриду, Дж/кг°К, яка визначається за формулою:

 

, (30)

де = 8319 - постійна газова стала;

-мопекупярна маса, мопь, = 64;

- абсолютна температура газоповітряної суміші, К0;

- поверхневий коефіцієнт масопередачі, кг/(год∙м2Па), який визначається за формулою:

 

, (31)

 

де wК - дійсна швидкість газу в каналах насадки, см/с, яка визначається за формулою:

(32)

 

де - робоча швидкість газу в каналах насадки в порівнянні зі швидкостями захлинання , коли настає режим винесення рі­дини з абсорбера у вигпяді крапель. За [9] = 3 м/с і рекомендується

- еквівалентний діаметр насадки-заповнювача апарата, см, приймається за табл. 5.1;

Е - вільний об'єм насадки, м33, приймається за табл. 5.1;

Т - абсолютна температура газоповітряної суміші, °К.

- рушійна сила процесу, Па, яка визначається за формулою:

, (33)

де - парціальний тиск домішки газової компоненти шкідливої речовини після очищення в апараті, Па, який визначається за формулою:

, (34)

де - початкова молярна доля газової компоненти в долях одиниці;

- ефективність очищення в долях одиниці.

Діаметр абсорбера Да, м, виражається через необхідну площу поперечного перерізу апарата Sа, м2, залежністю:


, (35)

 


яка визначається за формулою:

 


, (36)


 

де - швидкість газоповітряної суміші у вільному перерізі абсорбера без насад­ки, м/с, і визначається як , тоді діаметр абсорбера становитиме:

 

, (37)

 

Об'єм насадки Vнас, м3, визначається за формулою:

 


, (38)


де а - питома поверхня насадки, м23, приймається за табл. 5.1.

Висота шару насадки На, м, визначається за формулою:

 


, (39)


і повинна задовольняти вимогу, що

 

.



Якщо дана умова не виконується, необхідно висоту шару насадки розбивати на декілька шарів з обов'язковим встановленням проміжку між шарами 0,5 м.

Висота колони абсорбера Н, м, визначається за формулою:

 

Н = На + (1...1,5)Да + 2, (40)

 

де (1…1,5)Да - відстань від низу абсорбера до колосникової решітки, на яку навантажується насадка, м;

2 - відстань від верхньої (лобової) поверхні насадки до кришки абсорбера, м.

Для нейтралізації вловленої газової компоненти SО2 рідинним сорбентом - водою застосовується бікарбонат натрію (сода) Na2СО3 у вигляді водного розчину. Необхідна витрата соди, кг/год, для цього процесу визначається за формулою:

 


, (41)


де - молекулярна маса бікарбонату натрію.

Концентрація содового розчину в долях одиниці визначається за фо­рмулою:

(42)

де - витрата соди з 10% запасом, кг/год;

- густина зрошення м32∙год, яка визначається за [9] формулою:

 

= 0,158∙а, (43)

де - густина розчину, кг/м3, в розрахунках приймається ρр 1000 кг/м3.

 

Приклад 5.1. Розрахувати абсорбер колонного типу і визначити концентра­цію розчину бікарбонату натрію для вловлювання сірчистого ангідриду із газопові­тряної суміші при таких початкових даних: об'єм газоповітряної суміші, що очищується = 7 м3/с; мольна доля сірчистого ангідриду SO2 в газоповітряній суміші уп = 0,0254; ступінь очищення = 0,98; температура газоповітряної суміші tг = 40°С; процес сорбції проходить при атмосферному тиску Р = 101325 Па; в якості насадки взяти кільця Рашіга з розмірами в мм 50x50x5 із невпорядкованим їх роз­ташуванням.

 

Розв'язування. Парціальний тиск домішки газової компоненти SО2 на вході в абсорбер визначаємо за формулою:

 

.

 

Парціальний тиск домішки газової компоненти SО2 в газоповітряній суміші пі­сля очищення:

 

.

 

Кількість сірчистого ангідриду в газоповітряній суміші, що повинен бути абсо­рбованим:

 


,

 


.

 


Дійсна швидкість руху газоповітряної суміші в каналах насадки із кілець Рашіга з вільним об'ємом (табл. 5.1) Е = 0,785 м33:

 


.

 


Еквівалентний діаметр прийнятої насадки = 3,5 см. Поверхневий коефіцієнт масопередачі Ку, дорівнює:


 


 

.

 

Рушійна сила процесу абсорбції:

 


.

 


Поверхня контакту газоповітряної суміші:

 


м2.


 

Необхідна площа поперечного перерізу абсорбера:

 

м2.

 

Діаметр абсорбера:

.

 

Взявши за табл. 5.1 питому поверхню насадки кілець Рашіга а = 90 м23, об'єм насадки визначаємо за формулою (38):

 

.

 

Висота шару насадки На за формулою (39) дорівнює:

 

.

 

Умова виконується.

 

Висота абсорбера визначається за формулою (40):

 

м.

 

Розрахункова витрата бікарбонату натрію:

 

кг/год.

З урахуванням 10% запасу, витрата соди:

 

=1,1·2587=2846 кг/год.

 

Густина зрошення з урахуванням питомої поверхні насадки:

 

= 0,158 90 = 14,22 м3/(м2год).

 

Концентрація содового розчину в долях одиниці:

 

.

 

 

Для нейтралізації вловленої компоненти SО2 використовується чотирьох про­центний розчин соди.

 


Дата добавления: 2015-12-07; просмотров: 140 | Нарушение авторских прав



mybiblioteka.su - 2015-2024 год. (0.032 сек.)