Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Выводы из категорических суждений посредством их преобразования

Читайте также:
  1. Бухгалтерский учет международных расчетов посредством банковского перевода
  2. Ввод и просмотр данных посредством формы
  3. Вероятностная постановка задачи обучения распознаванию двух классов объектов посредством выбора разделяющей гиперплоскости
  4. Виды простых суждений
  5. Выводы и оценки референта
  6. ВЫВОДЫ И ПРЕДЛОЖЕНИЯ
  7. ВЫВОДЫ И ПРИВОДЫ

 

Непосредственными умозаключениями называются дедуктив­ные умозаключения, делаемые из одной посылки. К ним в тради­ционной логике относятся следующие: превращение, обращение, противопоставление предикату и умозаключения по «логичес­кому квадрату».

 

Превращение

Превращение — вид непосредственного умозаключения, при котором изменяется качество посылки без изменения ее количест­ва, при этом предикат заключения является отрицанием пред­иката посылки.

Как уже отмечалось, по качеству связки («есть» или «не есть») категорические суждения делятся на утвердительные и отрица­тельные.

Схема превращения:

S есть Р.

S не есть не-Р.

При этом частноутвердительное суждение превращается в ча­стно-отрицательное и наоборот, а общеутвердительное суждение превращается в общеотрицательное и наоборот.

Можно выделить два частных способа:

а) путем двойного отрицания, которое ставится перед связкой и перед предикатом:

S есть P. -> S не есть не-Р.

Подлежащие — главные члены предложения. -> Ни одно под­лежащее не является не главным членом предложения;

б) отрицание можно переносить из предиката в связку.

S есть нe-P.-> S не есть Р. Все галогены являются неметаллами. -> Ни один галоген не является металлом.

Превращению подлежат все четыре вида суждения: А, Е, I, О.

1. А -> Е.

Структура: Все S есть Р. -> Ни одно S не есть не-Р. Все волки — хищные животные. -> Ни один волк не является нехищным животным.

2. Е -> А.

Ни одно S не есть Р.-> Все S есть не-Р. Ни один многогранник не является плоской фигурой. -> Все многогранники являются неплоскими фигурами.

3. I -> O.

Некоторые S есть Р. ->Некоторые S не есть не-Р. Некоторые грибы съедобны.-> Некоторые грибы не являются несъедобными.

4. O -> I.

Некоторые S не есть Р.-> Некоторые S есть не-Р. Некоторые члены предложения не являются главными. -> Не­которые члены предложения являются неглавными.

 

Обращение

Обращением называется такое непосредственное умозаключе­ние, в котором в заключении (в новом суждении) субъектом является предикат, а предикатом — субъект исходного суждения, т. е. происходит перемена мест субъекта и предиката при со­хранении качества суждения.

Схема обращения:

S есть Р. Р есть S.

Приведем четыре примера:

1. Все дельфины — млекопитающие.-> Некоторые млекопи­тающие являются дельфинами.

2. Все развернутые углы — углы, стороны которого составля­ют одну прямую.-> Все углы, стороны которого составляют одну прямую, являются развернутыми углами.

3. Некоторые школьники являются филателистами.-> Неко­торые филателисты являются школьниками.

4. Некоторые музыканты — скрипачи.-> Все скрипачи явля­ются музыкантами.

Обращение бывает двух видов: простое, или чистое (примеры 2 и 3), и обращение с ограничением (примеры 1 и 4).

Обращение будет чистое, или простое, тогда, когда и S, и Р исходного суждения либо оба распределены, либо оба не распределены. Обращение с ограничением бывает тогда, когда висходном суждении субъект распределен, а предикат не рас­пределен, или наоборот, S не распределен, а Р распределен.

 

Примеры

1. Суждение А общеутвердительное.

а) «Все параллельные прямые в геометрии Евклида суть пря­мые, лежащие в одной плоскости и не имеющие общих точек» (определение).

После обращения данное суждение переходит в такое: «Все прямые, лежащие в одной плоскости и не имеющие общих точек, суть параллельные прямые в геометрии Евклида». Это чистое, или простое, обращение;

б) суждение А «Все ели — деревья» обращается с ограничени­ем: «Некоторые деревья есть ели».

2. Суждение Е общеотрицательное.

Так как в нем всегда и S и Р распределены, то его обращение чистое, или простое.

«Ни одна трапеция не является равносторонней фигурой». «Ни одна равносторонняя фигура не является трапецией».

3. Суждение I частноутвердительное. Два случая обращения:

а) обращение чистое, если S и Р нераспределены. Например, суждение «Некоторые растения являются ядовитыми» при об­ращении дает следующее суждение: «Некоторые ядовитые ор­ганизмы являются растениями»;

б) когда объем Р меньше объема S, т. е. Р распределен, a S не распределен, как, например, в суждении «Некоторые музыкан­ты — композиторы», то при обращении имеем суждение: «Все композиторы являются музыкантами».

4. Суждение О частноотрицательное.

Применяя операцию обращения, мы не получим необходимые выводы. Так, например, из истинного частноотрицательного суж­дения «Некоторые животные не являются собаками» путем об­ращения нельзя получить истинного суждения.

 


Дата добавления: 2015-10-30; просмотров: 145 | Нарушение авторских прав


Читайте в этой же книге: СЛОЖНОЕ СУЖДЕНИЕ И ЕГО ВИДЫ | ВЫРАЖЕНИЕ ЛОГИЧЕСКИХ СВЯЗОК (ЛОГИЧЕСКИХ ПОСТОЯННЫХ) В ЕСТЕСТВЕННОМ ЯЗЫКЕ | ОТНОШЕНИЯ МЕЖДУ СУЖДЕНИЯМИ ПО ЗНАЧЕНИЯМ ИСТИННОСТИ | ДЕЛЕНИЕ СУЖДЕНИЙ ПО МОДАЛЬНОСТИ | ПОНЯТИЕ О ЛОГИЧЕСКОМ ЗАКОНЕ | Закон тождества | Закон непротиворечия | Закон исключенного третьего | ИСПОЛЬЗОВАНИЕ ФОРМАЛЬНО-ЛОГИЧЕСКИХ ЗАКОНОВ В ОБУЧЕНИИ | Понятие логического следования |
<== предыдущая страница | следующая страница ==>
Понятие правила вывода| Противопоставление предикату

mybiblioteka.su - 2015-2025 год. (0.009 сек.)