Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Понятие логического следования

Читайте также:
  1. I. Исследования с орбиты Марса.
  2. II. Исследования на поверхности Марса.
  3. II.3. Организация исследования.
  4. III. особенности обследования больного с перитонитом
  5. L. Требования к освоению и гидродинамическим исследованиям в скважинах, вскрывших пласты, содержащие в продукции сернистый водород
  6. V1: Понятие логистики. Сущность и свойства логистической системы
  7. А) Специфика социологического знания

Выведение следствий из данных посылок — широко распрост­раненная логическая операция. Как известно, условиями истин­ности заключения являются истинность посылок и логическая правильность вывода. Иногда, в ходе доказательства от против­ного, в рассуждении допускаются заведомо ложные посылки (так называемый антитезис при косвенном доказательстве) или при­нимаются посылки недоказанные, однако в дальнейшем эти по­сылки обязательно подлежат исключению.

Человек, не изучавший логику, делает эти выводы, не приме­няя сознательно фигур и правил умозаключения. Формальная логика знакомит с правилами различных видов умозаключений. Математическая логика дает формальный аппарат, с помощью которого в определенных частях логики можно выводить следст­вия из данных посылок. Используя этот аппарат, мы можем, имея некоторые данные, получить из них новые сведения, непо­средственно не очевидные, но заключенные в этой информации, можем выводить логические следствия, вытекающие из данной информации.

Логическое следствие из данных посылок есть высказывание, которое не может быть ложным, когда эти посылки истинны.

Иными словами, некоторое выражение В есть логическое следствие из формулы А (где А и В — обозначения для различных по форме высказываний), если, заменив те конкретные элеме­нтарные высказывания, которые входят в А и В, переменными, мы получим тождественно-истинное выражение (А -> В), или за­кон логики.

Возьмем такой пример. Нам даны три посылки: 1) «Если Иван — брат Марьи или Иван — сын Марьи, то Иван и Ма­рья — родственники»; 2) «Иван и Марья — родственники»; 3) «Иван — не сын Марьи». Можно ли из них вывести логичес­кое следствие, что «Иван — брат Марьи»? Многим сначала ка­жется, что такое логическое заключение из данных трех посылок будет истинным. Чтобы проверить это, следует составить фор­мулу этого умозаключения. Обозначим суждение «Иван — брат Марьи» буквой (переменной) а, суждение «Иван — сын Марьи» — буквой b и суждение «Иван и Марья — родственники» — буквой с.

Запишем нашу задачу символами (над чертой записаны три данные посылки, под чертой — предполагаемое заключение):

Объединив три посылки в конъюнкцию «л» и присоединив к ним посредством знака «->» предполагаемое заключение а, получим формулу:

Нам нужно проверить, является ли данная формула, в кото­рой а, b, с трактуются теперь как переменные, законом логики. Составим для этой формулы таблицу (табл. 8).

 

Таблица 8

В последней колонке формула в одном случае принимает значение «ложь», значит, она не является законом логики. Следо­вательно, из данных трех посылок не следует с необходимостью заключения, что «Иван — брат Марьи». Иван может быть пле­мянником Марьи, или отцом Марьи, или дядей Марьи, или каким-либо другим ее родственником.

Этот пример показывает, что эффективность средств матема­тической логики видна тогда, когда средствами традиционной формальной логики трудно установить, вытекает ли какое-либо следствие из данных посылок или нет, особенно в случае, когда мы имеем дело с большим числом посылок (но не имеем еще дела с формулами, содержащими кванторы).

Умозаключения делятся на дедуктивные, индуктивные и умо­заключения по аналогии.

В определении дедукции в логике выявляются два подхода. 1. В традиционной (не в математической) логике дедукцией назы­вают умозаключение от знания большей степени общности к но­вому знанию меньшей степени общности. Впервые теория дедукции в этом плане была обстоятельно разработана Аристотелем. 2. В современной математической логике дедукцией называют умозаключение, дающее достоверное (истинное) суждение. Чет­кая фиксация существенного различия классического и современ­ного понимания дедукции особенно важна для решения методо­логических вопросов. Для различения двух смыслов дедукции можно классическое понимание обозначить термином «дедук-ция1» (сокращенно Д1), а современное — «дедукция2» (Д2).Прави­льно построенному дедуктивному умозаключению присущ необ­ходимый характер логического следования заключения из дан­ных посылок.

 


Дата добавления: 2015-10-30; просмотров: 119 | Нарушение авторских прав


Читайте в этой же книге: Виды простых суждений | Распределенность терминов в категорических суждениях | СЛОЖНОЕ СУЖДЕНИЕ И ЕГО ВИДЫ | ВЫРАЖЕНИЕ ЛОГИЧЕСКИХ СВЯЗОК (ЛОГИЧЕСКИХ ПОСТОЯННЫХ) В ЕСТЕСТВЕННОМ ЯЗЫКЕ | ОТНОШЕНИЯ МЕЖДУ СУЖДЕНИЯМИ ПО ЗНАЧЕНИЯМ ИСТИННОСТИ | ДЕЛЕНИЕ СУЖДЕНИЙ ПО МОДАЛЬНОСТИ | ПОНЯТИЕ О ЛОГИЧЕСКОМ ЗАКОНЕ | Закон тождества | Закон непротиворечия | Закон исключенного третьего |
<== предыдущая страница | следующая страница ==>
ИСПОЛЬЗОВАНИЕ ФОРМАЛЬНО-ЛОГИЧЕСКИХ ЗАКОНОВ В ОБУЧЕНИИ| Понятие правила вывода

mybiblioteka.su - 2015-2025 год. (0.006 сек.)