Читайте также:
|
|
ПРОИЗВОДНАЯ
1.1. Определение производной
Пусть на множестве задана функция . Фиксируем точку и задаем приращение аргумента . Тогда точка соответствует и называется приращением функции.
Если существует предел
,
то он называется производной функции в точке .
Существуют и другие обозначения производной: , .
Операция вычисления производной функции называется операцией дифференцирования, а если конечна, то функция называется дифференцируемой.
Прежде чем воспользоваться таблицами производных, надо установить, является функция простой или сложной.
Функция называется сложной, если есть функция от : , т. е. .
Производная сложной функции вычисляется по формуле
,
т. е. сначала вычисляется производная функции по переменной , и затем она умножается на производную функции по переменной .
Правила дифференцирования
1. ( – const)
2.
3.
3а.
4. ()
5. , если , .
Разумеется, что для справедливости этих правил необходимо существование производных , , , .
Таблица производных
1. () 2.
3. 4.
5. 6.
7. 8. ()
9. () 10.
11. 12. ()
13. 14.
15.
Пример 1. Найти производные функций:
а) ; б) ; в) .
Решение. а) Функция – это произведение двух функций и , поэтому по третьему правилу дифференцирования:
.
Из таблицы производных находим, что , и так как , то ; .
Значит, .
б)
.
в)
.
Пример 2. Найти производные функций:
а) ; б) ; в) .
Решение. а) Функция – это сложная функция , . Тогда по формуле 1 таблицы производных , а по формуле 5 .Таким образом, .
б) Используем правило дифференцирования 3а: . Функция – сложная , . Поэтому
.
в)
.
Дифференцирование неявных функций
Если функция такова, что подстановке ее в уравнение , последнее обращается в тождество, то говорят о неявном задании функции . Например, уравнение неявно задает функцию (а также функцию ). Однако не всегда удается перейти от неявного задания функции к явному.
Пусть дифференцируемая функция задана уравнением . Тогда дифференцируем левую и правую часть уравнения, считая сложной функцией, и выражаем из уравнения .
Пример 3. Найти производную функции .
Решение. ; .
Так как ,
,
,
,
то .
Слагаемые, содержащие , переносим в левую часть, а все остальное в правую:
,
.
Дата добавления: 2015-10-23; просмотров: 101 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Перспективы разработки систем распознавания речи | | | Логарифмическое дифференцирование |