Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Химический состав нуклеиновых кислот

Читайте также:
  1. II. Работая в парах, составьте похожие диалоги.
  2. II. Составные части, возмещение, ремонт, накопление основного капитала
  3. II. Химический состав хлоропластов
  4. III. Составление проекта федерального бюджета и отчета о его исполнении
  5. III. Составьте предложение из цепочки слов
  6. IV. Состав жюри конкурса
  7. IV. Составьте 5 вопросов к данному предложению

НК – это сложные высокомолекулярные соединения, полимеры, мономером которого является нуклеотид, состоящий из пятиуглеродного сахара, азотистого основания и фосфатной группы. В молекуле ДНК углевод представлен дезоксирибозой, в РНК – рибозой. Азотистые основания бывают двух типов: пуриновые – аденин (А), гуанин (Г) и пиримидиновые – цитозин (Ц), тимин (Т), урацил (У):

ДНКРНК

Н3РО4 Н3РО4

Дезоксирибоза Рибоза

Аденин Аденин

Гуанин Гуанин

Цитозин Цитозин

Тимин Урацил

Азотистые основания соединены с углеводом N-гликозидной связью; мононуклеотиды соединены между собой 3/,5/-фосфоэфирными связями.

Соединения, состоящие из основания и углевода, называются нуклеозидом. При этом чтобы отличить углеродные атомы рибозы и дезоксирибозы от углеродных атомов, входящих в состав пуриновых и пиримидиновых оснований, первые принято обозначать символом «штрих».

Состав и количественное содержание азотистых оснований ДНК варьирует у разных видов организмов, но не изменяется у одного и того же вида. Эти закономерности впервые установлены Э. Чаргаффом и названы правилами Чаргаффа:

1. Молекулярная масса пуринов равна молекулярной массе пиримидинов: А+Г=Ц+Т или

2. Количество аденина и цитозина равно количеству гуанина и тимина: А+Ц=Г+ Т или

3. Количество аденина равно количеству тимина, а количество гуанина равно количеству цитозина: А=Т и Г=Ц или и

4. Для характеристики вида существенное значение имеет коэффициент специфичности: выражаемый часто в молярных процентах (Г+Ц), или процентах ГЦ пар. Для животных и большинства растений этот коэффициент ниже 1 (от 0,5 до 0,94), у микроорганизмов он колеблется от 0,45 до 2,57.

 

Структура нуклеиновых кислот

Структура ДНК

В 1953 г. Джеймс Уотсон и Фрэнсис Крик, основываясь на данных рентгеноструктурного анализа ДНК, пришли к выводу, что нативная ДНК состоит из двух полимерных цепей, образующих двойную спираль ДНК (рис. 8).

Навитые друг на друга полинуклеотидные цепи удерживаются водородными связями, образующимися между комплементарными основаниями противоположных цепей (аденин образует пару с тимином, а гуанин с цитозином). Стабильность А-Т пар обеспечивается двумя водородными связями, а пар Г-Ц – тремя. Длина водородных связей между основаниями составляет около 0,34 нм, расстояние между витками (шаг спирали) – 3,4 нм, на этом участке укладывается десять нуклеотидных пар, размер одного нуклеотида – 0,34 нм, диаметр биспиральной молекулы – 1,8 нм. Длина двуцепочечной ДНК обычно измеряется числом пар комплементраных нуклеотидов (п.н.). Для молекул ДНК, состоящих из тысяч или миллионов пар нуклеотидов, приняты единицы т.п.н. и м.п.н. соответственно.

Каждая линейная цепь имеет два конца, на одном из них расположена
5/ОН – группа дезоксирибозы (не связанная с другим нуклеотидом), иногда она фосфорилирована. Это 5/-конец. На 3/-конце расположена свободная 3/ОН-группа.


Цепи молекул ДНК антипараллельны, одна имеет направление 3/ ® 5/ , другая 5/ ® 3/, что имеет важное биологическое значение при репликации и транскрипции молекул ДНК.

Конфигурация двойной спирали может меняться в зависимости от количества содержания воды и ионной силы среды. В настоящее время существуют шесть форм (А-, В-, С-, Д-, Е-, Z-) (рис.9), каждая из которых имеет свои особенности.

Так, у А-формы наблюдается смещение пар оснований от оси молекул к периферии, длина одного витка – 2,8 нм, вместо десяти пар содержится одиннадцать. В Z-форме двойная спираль образует зигзагообразную линию вдоль спирали; встречается такая форма в условиях высокой ионной силы, в коротких синтетических ДНК.

Двойная спираль на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы. В некоторых вирусах обнаружены одноцепочечные ДНК линейной и кольцевой формы.

Структура РНК

РНК – это линейная полинуклеотидная молекула, отличающаяся от ДНК рядом особенностей. Моносахаридом в РНК является рибоза, а вместо тимина содержится урацил. Соответственно, в РНК азотистые основания следующие: аденин (А), цитозин (Ц), гуанин (Г), урацил (У). Спаривание оснований происходит таким же образом, как и в ДНК, за исключением того, что вместо пары А-Т образуется А-У.

Гидроксильная группа во 2/-положении делает молекулу РНК химически более нестабильной по сравнению с ДНК. В разбавленном растворе щелочи РНК разрушается при комнатной температуре, а молекула ДНК устойчива.

Большинство молекул РНК одноцепочечные, хотя часто в них имеются взаимокомплементраные участки, образующие двуцепочечные структуры – «шпильки».

Существуют три основные типа РНК: информационная (матричная) – мРНК, рибосомная – рРНК, и транспортная – тРНК. Все они играют важную роль в процессе расшифровки генетической информации.

Роль мРНК заключается в переносе информации от ДНК в ядре до цитоплазмы, где она соединяется с рибосомами и служит матрицей, на которой осуществляется синтез белка.

мРНК разнообразны по молекулярной массе (от 0,05х106 до 4х106) и составляют около 2% от общего количества РНК в клетке. Каждую молекулу мРНК кодирует один ген или группа генов. В клетке постоянно образуется множество различных мРНК в соответствии с числом активных в данный момент генов. Время полужизни мРНК у эукариот от двадцати минут до нескольких часов, а у бактерий около двух минут.

Зрелая мРНК содержит 5/- и 3/-концевые нетранслируемые последовательности, длина которых варьирует у разных мРНК. На 5/-конце имеется «кэп»-структура (метилированный по 7/-положению гуанозин, связанный 5/,5/-трифосфатной связью со следующим основанием); на 3/-конце находится поли А-«хвост», содержащий от 20 до 250 нуклеотидов (рис. 10).


Б

Рис. 10. Структура мРНК (А) и кэп-структура на 5/-конце мРНК эукариот (Б)

Считается, 5/-кэп и поли-А «хвост» защищают мРНК от быстрой деградации. 5/-кэп, кроме того, соединяясь со специфическим белком, принимает участие в связывании мРНК с рибосомами, способствует инициации синтеза белка, влияет на транспорт, трансляцию и распад мРНК. Считается, что не все мРНК содержат поли-А «хвост» (у мРНК гистонов их нет).

рРНК высокомолекулярны и составляют около 80% всех клеточных РНК. В клетках эукариот синтез РНК идет в ядрышке и осуществляется ферментом РНК-полимеразой I. Геном содержит от 50 до 1000 идентичных генов, кодирующих рРНК. Связываясь с определенными белками, рРНК организует важнейший аппарат клет-
ки – рибосомы, обеспечивающие синтез всех клеточных белков. На рРНК приходится около 60% массы рибосомы.

тРНК низкомолекулярны (мол.м. около 25000). На долю тРНК приходится 10-15% от общего количества тРНК. Основная функция тРНК – связывание соответствующих аминокислот и перенос их на рибосому с помощью фермента аминоацилсинтетазы. Для каждой аминокислоты существует специфическая аминоацилсинтетаза и тРНК. В настоящее время открыто около шестидесяти различных тРНК (для ряда аминокислот имеется более одной). Аминокислота присоединяется к свободной 3/ ОН-группе. Все тРНК обладают сходной структурой и напоминают клеверный лист (рис. 11).

Рис. 11. Структура тРНК

Вопросы и задачи

1. Какие функции выполняют нуклеиновые кислоты?

2. Напишите структуру нуклеотида.

3. Назовите основные характеристики двойной спирали ДНК.

4. Какие связи обеспечивают формирование первичной и вторичной структуры нуклеиновых кислот?

5. Обьясните, что означает антипараллельность цепей ДНК в двойной спирали.

6. Назовите и охарактеризуйте виды РНК.

7. Установлено, что 22% общего числа нуклеотидов определенной мРНК приходится на гуанин, 35% - на цитозин, 19% – аденин и 24% - на урацил. Определите процентный состав азотистых оснований двуцепочечной ДНК, слепком с которой является эта мРНК.

 

Рекомендуемая литература

1. Березов Т.Т., Коровкин Б.Ф. Биологическая химия: Учебник. – М.: Медицина, 1998. – 704 с.

2. Биохимия. Краткий курс с упражнениями и задачами / Под ред. чл.-корр. РАН, проф. Е.С. Северина, проф. А.Я. Николаева. – М.: ГЭОТАР-МЕД, 2001.– 448 с.

3. Глик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. – Пер. с англ. – М.: Мир, 2002. – 589 с.

4. Жимулев И.Ф. Общая и молекулярная генетика: Учеб/ пособие. – Новосибирск: Изд-во Новосиб. ун-та: Сиб. унив. изд-во, 2002. – 459 с.

5. Коничев А.С. Молекулярная биология: Учебник для студ. пед. вузов / А.С. Коничев, Г.А. Севастьянова. – М.: Изд. центр «Академия», 2003. – 400 с.

6. Максимов Г.В., Степанов В.И., Василенко В.Л. Сборник задач по генетике: Учеб. пособие. – М.: Вузовская книга, 2001. – 136 с.

7. Остерман Л.А. Методы исследования белков и нуклеиновых кислот. – М.: Наука, 1981. – 285 с.

8. Сельскохозяйственная биотехнология: Учебник / В.С. Шевелуха, Е.А. Ка­лашникова, Е.С. Воронин и др. / Под ред. В.С. Шевелухи.– М.: Высшая школа, 2003. – 469 с.

9. Сингер М., Берг П. Гены и геномы: В 2 т. – Т. 1. – Пер. с англ. – М.: Мир, 1998. – 373с.

10. Степанов В.М. Молекулярная биология. Структура и функции белков.– М.: Высшая школа, 1996. – 335 с.

11. Уилсон Дж., Хант Т. Молекулярная биология клетки: Сб. задач. – Пер. с англ. – М.: Мир, 1994. – 520 с.

12. Эллиот В. Биохимия и молекулярная биология / В.Эллиот, Д. Эллиот; Под ред. А.И. Арчакова, М.П. Кирпичникова, А.Е. Медведева, В.П. Скулачева. – Пер. с англ. О.В. Добрыниной, И.С. Севериной, Е.Д. Скоцеляс и др. – М.:МАИК «Наука/ Интерпериодика», 2002. – 446 с.

 

 


Дата добавления: 2015-10-23; просмотров: 329 | Нарушение авторских прав


Читайте в этой же книге: Классификация аминокислот | Структурная организация белков | Физико-химические свойства белков | Кинетика ферментативных реакций | Витамины группы А | Витамины группы D | Витамины группы К | Витамины группы Е | Витамины, растворимые в воде | Пирролохинолинохинон (PQQ) |
<== предыдущая страница | следующая страница ==>
Классификация белков| Активный центр ферментов

mybiblioteka.su - 2015-2024 год. (0.01 сек.)