Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Явление множественного аллелизма, его биологическая сущность и значение в природе. Определение групп крови у человека по системе АВО.

Читайте также:
  1. A. [мах. 2,5 балла] Соотнесите систематические группы растений (А–Б) с их признаками (1–5).
  2. A11. Укажите значение слова ВЫСОКИЙ в предложении 3.
  3. Cтоимость проживания 1 человека в 3-х местном: июнь 95грн / июль 150грн
  4. EV4.9 Провода для передачи энергии тяговой системе
  5. HLA - система; классы антигенов, биологические функции, практическое значение HLA-типирования.
  6. I Проявление активности АНС.
  7. I. Выявление неудовлетворительной структуры баланса согласно ФЗ «О несостоятельности (банкротстве)» (Кириллова: для выявления признаков банкротства у государственных предприятий).

Генный, хромосомный и геномный уровни организации наследственного аппарата.

Генный уровень организации наследственного аппарата.

Ген- это участок молекулы ДНК несущий информацию о структуре одного белка.

Каждый ген отвечает за развитие отдельного признака. Число генов, заключенных в наследственном материале, велико.

Закономерность передачи всего генетического материала из поколения в поколение достигается благодаря тому, что отдельные гены существуют не разрозненно, а собраны в хромосомы, с которыми происходят строго определенные превращения в процессе размножения клеток и организмов.

1)Один ген образует один признак

2)Один ген один фермент (белок)

3)В настоящее время: один ген один полипептид

Все гены делятся на структурные (несут информацию о белках) и регуляторные гены (контролируют и регулируют деятельность структурных генов).

Различают также гены аллельные и неаллельные гены. Аллельные гены могут быть доминантными, рецессивными и промежуточными, или комбинированными; неаллельные — эпистатичными, гипостатичными, комплементарными, или индифферентными.

Аллельные гены- это гены, расположенные в одинаковых локусах (участках) гомологичных хромосом и отвечающие за развитие альтернативных признаков.

По своей абсолютной локализации гены делятся на аутосомные и гены сцепленные с полом. Изменения генов (мутации) являются источником изменчивости и приводят иногда к генным болезням.

Гены:

1)Работающие, во всех клетках (общие)

2)Работают в клетках одной ткани

3)Узко специальные для клеток одного типа

Хромосомный уровень организации наследственного аппарата.

В соответствии с хромосомной теорией наследственный материал, представленный в виде отдельных генов, организован в хромосомы. Благодаря наличию хромосом достигается объединение генов в комплексы — группы сцепления, количество которых во много раз меньше числа генов. Это позволяет точно распределять наследственный материал между клетками или передавать его от организма к организму, а также создает условия для появления новых комбинаций групп сцепления (анафаза I мейоза) или участков гомологичных хромосом (кроссинговер в профазе I мейоза) в гаметах. Таким образом, наличие хромосомной организации наследственного материала обеспечивает закономерности его распределения в потомстве и разнообразие организмов данного вида по их генетической структуре.

Геномный уровень организации наследственной информации.

Геном- это гаплоидный набор хромосом (одинарный).

Геномный уровень организации наследственного материала, объединяющий всю совокупность хромосомных генов, является эволюционно сложившейся структурой, характеризующейся относительно большей стабильностью, нежели генный и хромосомный уровни.

Результатом функционирования генома является формирование фенотипа целостного организма. В связи с этим фенотип организма нельзя представлять как простую совокупность признаков и свойств, это организм во всем многообразии его характеристик на всем протяжении индивидуального развития. Таким образом, поддержание постоянства организации наследственного материала на геномном уровне имеет первостепенное значение для обеспечения нормального развития, организма и воспроизведения у особи в первую очередь видовых характеристик.

Мутационные изменения, реализующиеся на геномном уровне организации наследственного материала,— мутации регуляторных генов, обладающих широким плейотропным действием, количественные изменения доз генов, транслокации и транспозиции генетических единиц, влияющие на характер экспрессии генов, наконец, возможность включения в геном чужеродной информации при горизонтальном переносе нуклеотидных последовательностей

 

 

Генетический код, его свойства.

Генетический код – система записи генетической информации в ДНК (РНК) в виде определенной последовательности нуклеотидов. Последовательность нуклеотидов определяет последовательность включения АК в синтезируемый белок.

В ДНК используется четыре азотистых основания — аденин (А), гуанин (G), цитозин (С), тимин (T). Эти буквы составляют алфавит генетического кода. В РНК тимин заменяется урацилом (У).

Свойства

•Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).

•Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.

•Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (исключение вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки)

•Специфичность — определённый кодон соответствует только одной аминокислоте.

•Избыточность — одной и той же аминокислоте может соответствовать несколько кодонов.

•Универсальность — генетический код работает одинаково в организмах разного уровня сложности

•Помехоустойчивость — мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.

Химическая организация и свойства гена.

Ген представляет собой последовательность нуклеотидов ДНК. Состоит из азотистых оснований (аденин, гуанин, цитозин, тимин) и фосфатного остатка.

Свойства гена.

•дискретность — несмешиваемость генов

•стабильность — способность сохранять структуру

•лабильность — способность многократно мутировать

•множественный аллелизм — многие гены существуют в популяции во множестве молекулярных форм

•аллельность — в генотипе диплоидных организмов только две формы гена

•специфичность — каждый ген кодирует свой признак;

•плейотропия — множественный эффект гена;

•экспрессивность — степень выраженности гена в признаке;

•пенетрантность — частота проявления гена в фенотипе;

•амплификация — увеличение количества копий гена.

Классификация генов (структурные и регуляторные) и генные мутации (замена азотистых оснований, сдвиг рамки считывания, инверсия нуклеотидных последовательностей.

Структурный ген — это участок ДИК или РНК (у некоторых вирусов), определяющий линейную последовательность полипептидной цепи или одной молекулы тРНК или рРНК. За счет разных рамок считывания, альтернативного сплайсинга и различных промоторов с одного гена могут быть транскрибированы несколько мРНК, выполняющих сходные иди различные функции.

Структурные гены, кодирующие синтез белков. Расположение нуклеотидных триплетов в структурных генах коллинеарно последовательности аминокислот в полипептидной цепи, кодируемой данным геном.

Регуляторный ген- ген, регулирующий или модифицирующий активность других (чаще всего структурных) генов.

Продукт регуляторного гена (обычно фактор транскрипции) может как активировать, так и репрессировать биохимические процессы в клетке, позволяя ей тем самым приспосабливаться к изменениям окружающей среды, напр. к изменениям количества и качества поступающих в нее питательных веществ.

Нескорректированные изменения химической структуры генов, воспроизводимые в последовательных циклах репликации и проявляющиеся у потомства в виде новых вариантов признаков, называют генными мутациями.

Мутации по типу замены азотистых оснований тип мутации в ДНК или РНК, для которой характерна замена одного азотистого основания другим.

Причины:

•возникающее случайно или под влиянием конкретных химических агентов изменение структуры основания, уже включенного в спираль ДНК. Примером может служить дезаминирование цитозина, превращающегося в урацил самопроизвольно или под влиянием азотистой кислоты.

•ошибочное включение в синтезируемую цепь ДНК нуклеотида, несущего химически измененную форму основания или его аналог. Примером этого может служить присоединение в ходе репликации к аденину материнской цепи нуклеотида с 5-бромурацилом (5-БУ), аналогичного тимидиловому нуклеотиду.

Важным источником возникновения таких мутаций являются нарушения процессов репликации и репарации.

Мутации со сдвигом рамки считывания. Этот тип мутаций составляет значительную долю спонтанных мутаций. Они происходят вследствие выпадения или вставки в нуклеотидную последовательность ДНК одной или нескольких пар комплементарных нуклеотидов. Большая часть изученных мутаций, вызывающих сдвиг рамки, обнаружена в последовательностях, состоящих из одинаковых нуклеотидов.

При непрерывности считывания и неперекрываемости генетического кода изменение количества нуклеотидов, как правило, приводит к сдвигу рамки считывания и изменению смысла биологической информации, записанной в данной последовательности ДНК.

Мутации по типу инверсии нуклеотидных последовательностей в гене. Данный тип мутаций происходит вследствие поворота участка ДНК на 180°. Обычно этому предшествует образование молекулой ДНК петли, в пределах которой репликация идет в направлении, обратном правильному.

В пределах инвертированного участка нарушается считывание информации, в результате изменяется аминокислотная последовательность белка.

Биосинтез белка (транскрипция, трансляция).

Транскрипция (в ядре) – это переписывание информации с ДНК на и-РНК. Матрицей для транскрипции служит одна из нитей ДНК.

Затем: и-РНК, т-РНК выходят из ядра.

Трансляция (на рибосомах) – перевод последовательности нуклеотидов и-РНК в последовательности аминокислот полипептидной цепи.

Матрицей для трансляции служит и-РНК.

Последовательность процессов.

1.Соединение и-РНК с рибосомой и образованию функционального центра рибосомы, в состав которого входят 2 триплета и РНК (6 нуклеотидов).

2.Присоединение к транспортной т-РНК соответствующих аминокислот и транспортировка их и рибосомах.

3.Считывание антикодоном Т-РНК кодона и-РНК, в случае их комплементарности- отделение аминокислоты от Т-РНК.

4.Присоединение отделившейся от т-РНК аминокислоты к растущей белковой молекуле.

5.Образование полипептида (белка).

Особенности экспрессии генов у прокариот - регуляция транскрипции у прокариот (схема А. Жакоба и Ф. Мано).

Экспрессия генов — это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт — РНК или белок. Экспрессия генов может регулироваться на всех стадиях процесса: и во время транскрипции, и во время трансляции, и на стадии посттрансляционных модификаций белков.

Изучение регуляции генной активности у прокариот привело французских микробиологов Ф. Жакоба и Ж. Моно к созданию (1961) оперонной модели регуляции транскрипции. Оперон — это тесно связанная последовательность структурных генов, определяющих синтез группы белков, которые участвуют в одной цепи биохимических преобразований. Например, это могут быть гены, которые детерминируют синтез ферментов, участвующих в метаболизме какого-либо вещества или в синтезе какого-то компонента клетки. Оперонная модель регуляции экспрессии генов предполагает наличие единой системы регуляции у таких объединенных в один оперон структурных генов, имеющих общий промотор и оператор.

В состав оперона входят расположенные друг за другом структурные гены, продукты которых обычно участвуют водном и том же метаболическом пути. Как правило, оперон имеет один набор регуля-торных элементов (регуляторный ген, промотор, оператор), что обеспечивает координацию процессов транскрипции генов и синтеза соответствующих белков. Промотор -это участок ДНК, ответственный за связывание с РНК-полимеразой.

Оператор - участок ДНК, с которым связывается белок-репрессор, мешая РНК-полимеразе начать транскрипцию.

Особенности регуляции экспрессии генов у эукариот

Регуляция экспрессии генов у эукариот протекает намного сложнее. Различные типы клеток многоклеточного эукариотического организма синтезируют ряд одинаковых белков и в то же время они отличаются друг от друга набором белков, специфичных для клеток данного типа. Уровень продукции зависит от типа клеток, а также от стадии развития организма. Регуляция экспрессии генов осуществляется на уровне клетки и на уровне организма.

Гены эукариотических клеток делятся на два основных вида: первый определяет универсальность клеточных функций, второй – детерминирует (определяет) специализированные клеточные функции. Функции генов первой группы прояв­ляются во всех клетках. Для осуществления дифференцированных функций специализированные клетки должны экспрессировать определенный набор генов.

Хромосомы, гены и опероны эукариотических клеток имеют ряд структурно-функциональных особенностей, что объясняет сложность экспрессии генов.

1. Опероны эукариотических клеток имеют несколько генов - регуляторов, которые могут располагаться в разных хромосомах.

2. Структурные гены, контролирующие синтез ферментов одного биохимического процесса, могут быть сосредоточены в нескольких оперонах, расположенных не только в одной молекуле ДНК, но и в нескольких.

3. Сложная последовательность молекулы ДНК. Имеются информативные и неинформативные участки, уникальные и многократно повторяющиеся информативные последовательности нуклеотидов.

4. Эукариотические гены состоят из экзонов и интронов, причем созревание и-РНК сопровождается вырезанием интронов из соответствующих первичных РНК-транскриптов (про-и-РНК), т.е. сплайсингом.

5. Процесс транскрипции генов зависит от состояния хроматина. Локальная компактизация ДНК полностью блокирует синтез РНК.

6. Транскрипция в эукариотических клетках не всегда сопряжена с трансляцией. Синтезированная и-РНК может длительное время сохраняться в виде информосом. Транскрипция и трансляция проис­ходят в разных компартментах.

7. Некоторые гены эукариот имеют непостоянную локализацию (лабильные гены или транспозоны).

8. Методы молекулярной биологии выявили тормозящее действие белков-гистонов на синтез и-РНК.

8 Гибридологический метод и изменения внесённые Менделем, Посттрансляционные изменения белков: фолдинг.

В отличие от своих предшественников, Мендель не учитывал весь разнообразный комплекс признаков у родителей и их потомков, а выделял и анализировал наследование по отдельным альтернативным признакам.

Был проведен обычный количественный учет наследования каждого альтернативного признака в ряду последовательных поколений. Было прослежено не только первое поколение от скрещивания, но и характер потомства каждого гибрида в отдельности при самоопылении. Мендель проанализировал закономерность наследования как в тех случаях, когда родительские организмы отличались по одной альтернативной паре, так и в случаях, когда они различались по нескольким парам признаков.

Сущность гибридологического метода заключается в следующем: 1) для скрещивания выбирают родительские формы, четко различающиеся по одной, двум или трем парам контрастных,альтернативных признаков. 2) выбранные для скрещивания родительские формы должны быть генетически чистыми. 3) Мендель ввел точный математический учет наследования каждого отдельного признака. Наблюдению подвергают все без исключения растения в каждом отдельном поколении. Как правило, для определения наследования признака используют гибриды первого, второго и иногда третьего поколений; 4) гибриды и их потомки в каждом из следующих друг за другом поколений не должны обнаруживать заметных нарушений в плодовитости; 5) Мендель ввел буквенное обозначение наследственных задатков (генов) различных признаков. Например, А — ген доминантного признака, а — ген рецессивного признака.

Посттрансляционные изменения белков включают формирование высших структур белка после синтеза полипептидной цепи в рибосомах. Описаны более сотни различных вариантов посттрансляцийних изменений в белках. К наиболее известным принадлежат:

Фолдинг белков. Это свертывание полипептидной цепи в трехмерную структуру. Если белок состоит из нескольких субъединиц, то фолдинг включает и их объединение в одну макромолекулу. Фолдинг - это обязательный этап превращения полипептидной цепи, которая сходит с рибосомального конвеера, на функционально активный белок. В результате фолдинга у полипептида уменьшается свободная энергия, гидрофобные остатки аминокислот упаковываются преимущественно в середину молекулы, а гидрофильные остатки располагаются на поверхности белковой глобулы

9)Первый и второй законы Менделя(единообразия и расщепления) генетические схемы наследования и их цитологическое подтверждение.
Закон единообразия:

Относительно просто выращивается и имеет короткий период развития;

Имеет многочисленное потомство, благодаря чему легко прослеживаются статистические закономерности в гибридном поколении;

Имеет большое количество хорошо заметных альтернативных признаков (окраска венчика – белая или красная; окраска семядолей – зеленая или желтая; форма семени – морщинистая или гладкая; окраска боба – желтая или зеленая; форма боба – округлая или с перетяжками; расположение цветков или плодов – по всей длине стебля или у его верхушки; высота стебля – длинный или короткий);

Является строгим самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Имеет семь пар хромосом в диплоидном наборе.

Генетическая символика, предложенная Г.Менделем и другими учеными и используемая для записи результатов скрещиваний в настоящее время: Р – родители; G – гаметы; F – потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F1 – гибриды первого поколения – прямые потомки родителей, F2 – гибриды второго поколения – возникают в результате скрещивания между собой гибридов F1); х – значок скрещивания; ♂ – мужская особь; ♀ – женская особь; А – доминантный признак; а – рецессивный признак.

Позже выявленная закономерность была названа законом единообразия гибридов первого поколения, или законом доминирования. Это первый закон Менделя: при скрещивании двух организмов, относящихся к разным чистым линиям (двух гомозиготных организмов), отличающихся друг от друга по одной паре альтернативных признаков, все первое поколение гибридов (F1) окажется единообразным, и будет нести признак одного из родителей.
Закон расщепления:
Семена гибридов первого поколения использовались Менделем для получения второго гибридного поколения. В F2 6022 горошины были желтого цвета, 2001 горошины – зеленого.

У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Подобные же результаты были получены в F2 при анализе еще 6 пар признаков.

При скрещивании гибридов первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1. Это второй закон Менделя, закон расщепления.
Генетические схемы наследования и их цитологическое подтверждение:
Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой «А», а зеленую – «а». Поскольку Мендель работал с сортами – гомозиготными линиями, оба скрещиваемых организма несут два одинаковых аллеля гена окраски семян (соответственно, «АА» и «аа»). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном «А», а другого – с геном «а».

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип «Аа», один вариант генотипа даст один вариант фенотипа – желтый цвет горошин.У гибридного организма, имеющего генотип «Аа» во время мейоза хромосомы расходятся в разные клетки и образуется два типа гамет – половина гамет будет нести ген «А», другая половина – ген «а».

10) Гипотеза «чистоты гамет» и ее цитологическое обоснование.
Для объяснения полученных результатов Мендель предложил «гипотезу чистоты гамет», согласно которой гаметы "чисты", содержат только один наследственный фактор из пары. При слиянии гамет происходит соединение двух наследственных факторов в одном организме, но они не смешиваются и остаются в неизменном виде. Гомозиготы образуют один тип гамет, гетерозиготы (гибриды) два: 50% гамет с доминантными наследственными факторами, 50% – с рецессивными. При их слиянии ¼ потомства будет иметь генотип АА, ½ – генотип Аа, ¼ – генотип аа.

Анализирующее скрещивание.

Для доказательства своих предположений Г.Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание – скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F1 с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин – желтого».

Из генетической схемы, он действительно получил расщепление «1:1» и убедился в правильности своих предположений и выводов. При скрещивании гомозигот АА х аа потомство будет единообразным.

12) Дигибридное скрещивание. Третий закон менделя(независимое наследование и комбинирование признаков)
Сущность дигибридного скрещивания. Организмы различаются по многим генам и, как следствие, по многим признакам. Чтобы одновременно проанализировать наследование нескольких признаков, необходимо изучить наследование каждой пары признаков в отдельности, не обращая внимания на другие пары, а затем сопоставить и объединить все наблюдения. Именно так и поступил Мендель.

Скрещивание, при котором родительские формы отличаются по двум парам альтернативных признаков (по двум парам аллелей), называется дигибридным. Гибриды, гетерозиготные по двум генам, называют дигетерозиготными, а в случае отличия их по трем и многим генам —три- и полигетерозиготными соответственно.

Результаты дигибридного и полигибридного скрещивания зависят от того, располагаются гены, определяющие рассмотренные признаки, в одной хромосоме или в разных.

Независимое наследование (третий закон Менделя). Для дигибридного скрещивания Мендель использовал гомозиготные растения гороха, различающиеся одновременно по двум парам признаков. Одно из скрещиваемых растений имело желтые гладкие семена, другое — зеленые морщинистые
Дигибридное скрещивание формула расщепления по фенотипу и генотипу.
Формула 9: 3: 3: 1 выражает расщепление в F2 по фенотипу при дигибридном скрещивании. Анализ расщепления по генотипу даёт нам формулу расщепления: 1AABB, 2AaBB, 2AABb, 4AaBb, 1Aabb, 2Aabb, 1aaBB, 2aaBb и 1aabb. Расщепление по генотипу в F2 при дигибридном скрещивании 1: 2: 2: 4: 1: 2: 1: 2: 1отражает расщепление 9: 3: 3: 1.


13) Применение законов менделя в генетике человека:
1) Генеалогический: установление наследственного характера заболеваний или признаков, определение типа и характера наследования, медико-генетическое консультирование для прогнозирования потомства.
2) Близнецовый: определение соотносительной роли генотипа и среды в развитии признака, оценка пенетрантности аллеля.

3) Цитогенетический: изучение нормальной морфологии хромосом и кариотипа. Диагностика хромосомных болезней. Составление хромосомных карт.

4) Моделирования: изучение наследственной патологии человека. Биологическое моделирование. Математическое моделирование.

5) Биохимический: Генные болезни, определение первичного энзиматического дефекта. Диагностика гетерозиготных носителей.

6) Пренатальная диагностика: Ультразвуковое сканирование. Амниоцентез. Биопсия ворсин хориона.

7) Иммунологический: Изучение генетики несовместимости тканей. Изучение генетических механизмов иммунных реакций. Изучение закономерностей наследования антигенов.

8) Дерматоглифика: Изучение кожных узоров пальцев(дактилоскопия), ладоней(пальмоскопия) и стопы (плантоскопия) как вспомогательный метод диагностики наследственной патологии.

9) Популяционно-статистический: изучение наследственных признаков в больших группах населения(закон Харди-Вайнберга). Изучение мутационного процесса. Определение роли наследственности и среды в формировании фенотипического полиморфизма человека(в норме и в возникновении болезней с наследственной предрасположенностью).

14) Полное доминирование — это вид взаимодействия аллельных генов, при котором фенотип гетерозигот не отличается от фенотипа гомозигот по доминанте, то есть в фенотипе гетерозигот присутствует продукт доминантного гена. Полное доминирование широко распространено в природе, имеет место при наследовании, например, окраски и формы семян гороха, цвета глаз и цвета волос у человека, резус-антигена и мн. др.
Неполное доминирование - Так называется вид взаимодействия аллельных генов, при котором фенотип гетерозигот отличается как от фенотипа гомозигот по доминанте, так и от фенотипа гомозигот по рецессиву и имеет среднее (промежуточное) значение между ними. Имеет место при наследовании окраски околоцветника ночной красавицы, львиного зева, окраски шерсти морских свинок и пр.

Сам Мендель столкнулся с неполным доминированием, когда скрещивал крупнолистный сорт гороха с мелколистным. Гибриды первого поколения не повторяли признак ни одного из родительских растений, они имели листья средней величины.

При скрещивании гомозиготных красноплодных и белоплодных сортов земляники все первое поколение гибридов имеет розовые плоды. При скрещивании этих гибридов друг с другом получаем: по фенотипу — 1/4 красноплодных, 2/4 розовоплодных и 1/4 белоплодных растений, по генотипу — 1/4 АА, 1/2 Аа, 1/4 аа (и по фенотипу, и по генотипу соотношение 1:2:1). Соответствие расщепления по генотипу расщеплению по фенотипу является характерным при неполном доминировании, так как гетерозиготы фенотипически отличаются от гомозигот.

Сверхдоминирование – лучшая приспособленность гетерозигот от моногибридного скрещивания (например, Аа) по сравнению с обоими типами гомозигот (АА и аа). Сверхдоминирование можно определить также как гетерозис, возникающий при моногибридном скрещивании. Наиболее известный пример взаимоотношения между нормальным (S) и мутантным (s) аллелями гена, контролирующего структуру гемоглобина у человека. Люди, гомозиготные по мутантной аллели (ss), страдают тяжёлым заболеванием крови – серповидноклеточной анемией, от которого они гибнут обычно в детском возрасте (эритроциты больного имеют серповидную форму и содержат гемоглобин, структура которого незначительно изменена в результате мутации).

Кодоминирование- в этом случае у гибридов фенотипически проявляются оба признака. Например, кодоминирование проявляется у людей с 4 группой крови. Первая группа крови у людей с аллелями i0i0, вторая — с аллелями IAIA или IAí0; третья — IВIВ или IВí0; четвертая группа имеет аллели IАIВ.

Явление множественного аллелизма, его биологическая сущность и значение в природе. Определение групп крови у человека по системе АВО.

Множественный аллелизм – это существование в популяции более двух аллелей данного гена. В популяции оказываются не два аллельных гена, а несколько.

Явление множественного аллелизма определяет фенотипическую гетерогенность популяций, это одна из основ разнообразия генофонда. Для множественных аллелей характерно влияние всех аллелей на один и тот же признак. Отличие между ними заключается лишь в степени развития признака. В основе этой множественности лежат генные мутации (полезные, нейтральные, вредные), изменяющие последовательность азотистых оснований молекулы ДНК в участке, соответствующем данному гену.

Множественный алелизм имеет важное биологическое и практическое значение, поскольку усиливает комбинативную изменчивость, особенно генотипическую.

По характеру доминирования аллеломорфные признаки размещаются в последовательном ряду: чаще нормальный, неизмененный признак доминирует над другими, второй ген ряда рецессивный относительно первого, однако доминирует над следующими и так далее. Яркий пример - наследование групп крови, о ктором речь пойдёт в следующем разделе. Явление множественного аллелизма широко распространено в природе. Известны обширные серии множественных аллелей, определяющих тип совместимости при опылении у высших растений, при оплодотворении у грибов, детерминирующих окраску шерсти животных, формы цветка львиного зева, остистости колоса у пшеницы, глаз у дрозофилы, форму рисунка на листьях белого клевера, наконец, у растений, животных и микроорганизмов известно много примеров так называемых аллозимов или аллельных изоэнзимов - белковых молекул, различия между которыми определяются аллелями одного гена.

Определение групп крови у человека по системе АВО.

Систему группы крови АВО составляют два групповых агглютиногена - А и В и два соответствующих агглютинина в плазме - альфа (анти-А) и бета (анти-В). Различные сочетания этих антигенов и антител образуют четыре группы крови: группа 0(1) - оба антигена отсутствуют; группа А(II) - на эритроцитах присутствует только антиген А; группа В(III) - на эритроцитах присутствует только антиген В; группа АВ (IV) - на эритроцитах присутствуют антигены А и В.

Уникальность системы АВО состоит в том, что в плазме у неиммунизированных людей имеются естественные антитела к отсутствующему на эритроцитах антигену: у лиц группы 0(1) - антитела к А и В; у лиц группы А(II) - анти-В-антитела; у лиц группы В(III) - анти-А-антитела; у лиц группы АВ(IV) нет антител к антигенам системы АВО.

В последующем тексте анти-А- и анти-В-антитела будут обозначаться как анти-А и анти-В.

Определение группы крови АВО проводят путем идентификации специфических антигенов и антител (двойная или перекрестная реакция). Анти-А и анти-В выявляют в сыворотке крови с помощью стандартных эритроцитов А(II) и В(III). Наличие или отсутствие на эритроцитах антигенов А и В устанавливают при помощи моноклональных или поликлональных антител (стандартных гемагглютинирующих сывороток) соответствующей специфичности.

Определение группы крови проводят дважды: первичное исследование - в лечебном отделении (бригаде заготовки крови); подтверждающее исследование - в лабораторном отделении.

16) Типы взаимодействия неаллельных генов для качественных признаков: комплементарность, эпистаз и для количественных признаков: полимерия(кумулятивная, некумулятивная) Примеры у растений животных и человека

Комплементарность. Комплементарное (дополнительное) действие генов — это вид взаимодействия неаллельных генов, доминантные аллели кото­рых при совместном сочетании в генотипе обусловливают новое фенотипическое проявление признаков. При этом расщепление гибридов F2 по фенотипу может происходить в соотношениях 9:6:1, 9:3:4, 9:7, иногда 9:3:3:1.

Примером комплементарности является наследование формы плода тыквы. Наличие в генотипе доминантных генов А или В обу­словливает сферическую форму плодов, а рецессивных — удли­нённую. При наличии в генотипе одновременно доминантных ге­нов А и В форма плода будет дисковидной. При скрещивании чистых линий с сортами, имеющими сферическую форму плодов, в первом гибридном поколении F1 все плоды будут иметь дисковидную форму, а в поколении F2 произойдёт расщепление по фе­нотипу: из каждых 16 растений 9 будут иметь дисковидные пло­ды, 6 — сферические и 1 — удлинённые.

Эпистаз. Подавление (ингибирование) действия одной аллельной пары генов геном другой, не аллельной им пары, называется эпистазом. Различают доминантный и рецессивный эпистаз. Если обычное аллельное доминирование можно представить в виде формулы А>а, То явление эпистаза выразится формулой А>В (доминантный эпистаз) или А>В (рецессивный эпистаз), когда доминантный или рецессивный ген одной аллельной пары не допускает проявления генов другой аллельной пары.

Гены, подавляющие действие других, не аллельных им генов, называются Эпистатичными, А подавляемые — Гипостатичными. Эпистатическое взаимодействие генов по своему характеру противоположно комплементарному взаимодействию. При эпистазе фермент, образующийся под контролем одного гена, полностью подавляет или нейтрализует действие фермента, контролируемого другим геном.

Полимерия(кумулятивная, некумулятивная).

При кумулятивной полимерии интенсивность значения признака зависит от суммирующего действия генов: чем больше доминантных аллелей, тем больше степень выраженности признака. При некумулятивной полимерии количество доминантных аллелей на степень выраженности признака не влияет, и признак проявляется при наличии хотя бы одного из доминантных аллелей. Полимерные гены обозначаются одной буквой, аллели одного локуса имеют одинаковый цифровой индекс, например А1а1А2а2А3а3.

Кумулятивная полимерия имеет место при наследовании окраски зерновок пшеницы, чешуек семян овса, роста и цвета кожи человека и т.д. Некумулятивная полимерия имеет место при наследовании формы плодов пастушьей сумки.

На этом основании генетики уже давно ввели в обиход понятие генах-модификаторах. Причем некоторые исследователи различают гены основного действия, т. е. такие, которые определяют развитие признака или свойства, например выработку пигментов, наличие мл и отсутствие цианида, устойчивость или чувствительность к заболеваниям и т. д., и такие, которые сами по себе не определяют какую-либо качественную реакцию или признак, а лишь усиливают или ослабляют проявление действия основного гена. Одни из генов-модификаторов могут усиливать эффект, и их называют интенсификаторами; другие ослабляют эффект основного гена, и их называют подавителями (супрессорами).

17)


Дата добавления: 2015-10-23; просмотров: 1440 | Нарушение авторских прав


Читайте в этой же книге: Фенотип людини як сукупність видових та індивідуальних ознак і властивостей організму. | Зчеплене успадкування генів. Хромосомна теорія спадковості. | Пренатальна діагностика спадкової патології. | Методи вивчення спадковості людини: генеалогічний, близнюковий, біохімічні. | Мультифакторіальний принцип формування фенотипу. Значення умов середовища для експресивності й пенетрантності генів. Фенокопії. | Синдром Клайнфельтера | Вплив паразитів на хазяїна. Пояснити на конкретних прикладах. | Сисун ланцетоподібний. Поширення, морфофункціональні особливості, цикл розвитку, шляхи зараження людини, патогенний вплив, лабораторна діагностика і профілактика. | Отруйні тварини. Пояснити на конкретних прикладах. | Ріст клітин,фактори росту. |
<== предыдущая страница | следующая страница ==>
ЕВОЛЮЦІЙНЕ ВЧЕННЯ| Організація потоку біологічної інформації в клітині

mybiblioteka.su - 2015-2024 год. (0.025 сек.)