Читайте также: |
|
Ghasem Nabatian, Majid Ghaderi
Department of Geology, Tarbiat Modares University, Tehran, Iran,
gh.nabatian@hotmail.co.uk
Fig. (a) Last ice-melting temperature for inclusions in apatite, (b) Fluid inclusion homogenization temperatures for inclusions in the apatite, (c) Last ice-melting temperature for inclusions in vein type last stage quartz, (d) Fluid inclusion homogenization temperatures for inclusions in the quartz, and (e) Last ice-melting temperature and homogenization diagram of fluid inclusions in apatite and quartz.
Fluid inclusion studies were carried out on apatite and late stage quartz to understand characteristics of the ore-bearing fluids. Most of the quartz crystals are clear with few small numbers of fluid inclusions the majority of which are 5-30 µm but fluid inclusions of the apatite are typically 20-100 and up to 150 µm. Three types of primary fluid inclusions are identified in the apatite (three-phase (L+V+S), two-phase (L+V), and mono-phase (L or V)) during microscopic studies and on the basis of their morphology. Some of these inclusions comprise trapped crystals of dark magnetite and/or red color hematite. The two-phase inclusions are abundant within these apatite crystals which are usually liquid rich. Also, two-phase (L+V) fluid inclusions are more abundant than mono-phase inclusions in the late stage quartz veins. Homogenization temperatures of apatite fluid inclusions are of 209º-520 ºC and indicate salinities of 9.08-21.61 wt% NaCl equiv (Fig.). δ18O values in the magnetite associated with apatite are 9.72-11 per mil at 341.8 ºC and those from disseminated magnetite within the host rock are 9.0-11.32 per mil at 341.8 ºC. Fluid inclusions in the late-stage veins of quartz homogenize at 186.4º-262.6 ºC and δ18O values are 2.5-7.4 per mil at 220 ºC (Fig.). Oxygen isotope in the late stage veins of carbonate has values of 3.28-6.14 per mil at 100 ºC. Based on these data in the late stage veins of quartz and carbonate, fluids may have been derived from the introduction of a cooler, less saline and isotopically depleted fluid such as meteoric water component. Fluid inclusions and δ18O isotope data show that the deposit generated by predominantly magmatic fluid. In the final stage of mineralization, mixing of cooler meteoric water with magmatic fluids has reduced δ18O values in magmatic fluids and may have facilitated precipitation of sulfides, quartz and carbonate veins.
Дата добавления: 2015-10-29; просмотров: 129 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
The unusual Las Cruces copper mineralization: is the enrichment an actual supergene system? | | | Lithostructural controls on gold in the Oumé-Fettékro greenstone belt, Côte d’Ivoire |