Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Lab13: Study of Dynamic Shift Register

Читайте также:
  1. A Case Study in Change at Harvard
  2. A case study of Iraq and Afghanistan
  3. A law – it is connection between the phenomena: general, objective, substantial and necessary. There are 3 laws of dialectics, we will study them on the next lecture.
  4. A new study asks how long the Chinese economy can defy the odds
  5. A new study looks at the relationship between media use and mental health, but does not answer a big question.
  6. A) Study this list of proper adjectives.
  7. Advantages of studying abroad

Digital Integrated Circuits

 

Objective

To study the properties of dynamic shift register as well as their characteristics and parameters by the application of HSPICE circuit simulation tool and hence provide an estimation of its values through calculations

Laboratory tasks

2.1. Characteristics of Dynamic Shift Register (DSHRG4) Circuit

 

Fig. 13.1. 4-bit dynamic shift register’s logic circuit and input and output signal waveforms

 

 

Truth table of 4-bit shift register

CLK1 CLK2 D Q0 Q1 Q2 Q3
    D0        
I clock pulse I clock pulse D1 D1      
II clock pulse II clock pulse D2 D2 D1    
III clock pulse III clock pulse D3 D3 D2 D1  
IV clock pulse IV clock pulse D4 D4 D3 D2 D1

 

 

For example, in case of writing 1011 combination in the register, the truth table has the following view:

CLK1 CLK2 D Q0 Q1 Q2 Q3
    X        
I clock pulse I clock pulse          
II clock pulse II clock pulse          
III clock pulse III clock pulse          
IV clock pulse IV clock pulse          

 

 

Bulks of NMOS transistors are connected to VSS

Bulks of PMOS transistors are connected to VDD

 

Fig. 13.2. Dynamic D trigger’s symbol and electrical circuit

 

CLK1 and CLK2 clock signals can be obtained from impulse generators not overlapping each other (Fig. 13.3) using the circuits of the inverter and NAND cell shown in Fig. 13.4 (Fig. 13.4).

Fig. 13.3. Logic circuit of impulse generators not overlapping each other

     

 

Bulks of NMOS transistors are connected to VSS

Bulks of PMOS transistors are connected to VDD

 

Fig. 13.4. Inverter’s and NAND logic cell’s symbols and electrical circuits


 

/student_lab/digital_ic/variant_val/...

/student_lab/digital_ic/variant_val/...

For input files take:

 

Before writing 1011 code, it is necessary to write 0000 code in the register (register’s 0 reset).

 

2.1.1. The input file for measuring the delays for 4-state dynamic shift register in transition mode by using HSPICE circuit simulation tool is listed below:

 

*DSHRG4

*Propagation Delay

* HSPICE Netlist

.options POST=1 parhier=local

* Models section

* Include models

.include '/student_lab/digital_ic/all_models/model_val'

* Design variables section

* Define parameters

.param vdd = VDD_val

.param tr=TR_val

.param freq=FREQ_val

.param per=’1/freq’

.param tst=’0.5*per’

.temp Temp_val

* Structural netlist section

.include '/student_lab/digital_ic/variant_val/dshrg4.netl'

.include '/student_lab/digital_ic/variant_val/nonov.netl.netl'

vvss vss gnd dc=0

vvdd vdd gnd dc='vdd'

***Input Signals

vclk clk 0 pulse 0 vdd 'tst' tr tr '0.5*per-tr' 'per'

vd d 0 pwl 0 0 'tst+3.75*per' 0 'tst+3.75*per+tr' vdd + 'tst+4.75*per' vdd 'tst+4.75*per+tr' 0 'tst+5.75*per' 0 'tst+5.75*per+tr' vdd

cloadq0 q0 0 LOAD_val

cloadq1 q1 0 LOAD_val

cloadq2 q2 0 LOAD_val

cloadq3 q3 0 LOAD_val

* Analysis section

* Transient Analyses

.tran ‘0.01*tr’ ‘9*per’

.probe v(*)

*Options

.option post probe

.option autostop

***Measures

***Propagation Delay

.meas tran tplh_clk_q0 trig v(clk) val='0.5*vdd' rise=5 targ v(q0) val='0.5*vdd' td='tst+3.5*per' rise=1

.meas tran tphl_clk_q0 trig v(clk) val='0.5*vdd' rise=6 targ v(q0) val='0.5*vdd' td='tst+3.5*per' fall=1

.meas tran tplh_clk_q1 trig v(clk) val='0.5*vdd' rise=6 targ v(q1) val='0.5*vdd' td='tst+3.5*per' rise=1

.meas tran tphl_clk_q1 trig v(clk) val='0.5*vdd' rise=7 targ v(q1) val='0.5*vdd' td='tst+3.5*per' fall=1

.meas tran tplh_clk_q2 trig v(clk) val='0.5*vdd' rise=7 targ v(q2) val='0.5*vdd' td='tst+3.5*per' rise=1

.meas tran tphl_clk_q2 trig v(clk) val='0.5*vdd' rise=8 targ v(q2) val='0.5*vdd' td='tst+3.5*per' fall=1

.meas tran tplh_clk_q3 trig v(clk) val='0.5*vdd' rise=8 targ v(q3) val='0.5*vdd' td='tst+3.5*per' rise=1

.meas tran tphl_clk_q3 trig v(clk) val='0.5*vdd' rise=9 targ v(q3) val='0.5*vdd' td='tst+3.5*per' fall=1

.end

 

2.1.2. The input file for measuring the dynamic power for 4-state dynamic shift register in transition mode by using HSPICE circuit simulation tool is listed below:

 

*DSHRG4

*Average Current, Power

* HSPICE Netlist

.options POST=1 parhier=local

* Models section

* Include models

.include '/student_lab/digital_ic/all_models/model_val'

* Design variables section

* Define parameters

.param vdd = VDD_val

.param tr=TR_val

.param freq=FREQ_val

.param per=’1/freq’

.param tst=’0.5*per’

.temp Temp_val

* Structural netlist section

.include '/student_lab/digital_ic/variant_val/dshrg4.netl'

.include '/student_lab/digital_ic/variant_val/nonov.netl.netl'

vvss vss gnd dc=0

vvdd vdd gnd dc='vdd'

***Input Signals

vclk clk 0 pulse 0 vdd 'tst' tr tr '0.5*per-tr' 'per'

vd d 0 pwl 0 0 'tst+3.75*per' 0 'tst+3.75*per+tr' vdd + 'tst+4.75*per' vdd 'tst+4.75*per+tr' 0 'tst+5.75*per' 0 'tst+5.75*per+tr' vdd

cloadq0 q0 0 LOAD_val

cloadq1 q1 0 LOAD_val

cloadq2 q2 0 LOAD_val

cloadq3 q3 0 LOAD_val

* Analysis section

* Transient Analyses

.tran ‘0.01*tr’ ‘tst+8*per’

.probe v(*)

*Options

.option post probe

***Measures

***Propagation Delay

.meas tran avg_i_1 avg i(vvdd) from = 'tst+4*per' to = 'tst+5*per'

.meas tran avg_i_2 avg i(vvdd) from = 'tst+5*per' to = 'tst+6*per'

.meas tran avg_i_3 avg i(vvdd) from = 'tst+6*per' to = 'tst+7*per'

.meas tran avg_i_4 avg i(vvdd) from = 'tst+7*per' to = 'tst+8*per'

.meas tran avg_pow_1 param = 'abs(vdd*avg_i_1)'

.meas tran avg_pow_2 param = 'abs(vdd*avg_i_2)'

.meas tran avg_pow_3 param = 'abs(vdd*avg_i_3)'

.meas tran avg_pow_4 param = 'abs(vdd*avg_i_4)'

.end

 

Steps to Perform the Work

Simulation of 4-State Dynamic Shift Register

In transition mode:

  1. Get input and output signal waveforms,
  2. Measure tPHL and tPLH delays and their average values (tP=(tPHL+ tPLH)/2)
  3. Measure average dynamic power consumed in every clock pulse.

 

Processing the Results Obtained in the Laboratory Exercise

Fill in the results obtained through simulation in Table 7.

 

Report

The report should contain:

1. Studied circuits;

2. Texts from input files;

3. Calculated characteristics and parameters of circuits;

4. Characteristics obtained from simulation;

5. Results obtained from the lab exercise;

6. Brief summary.


Дата добавления: 2015-10-29; просмотров: 173 | Нарушение авторских прав


Читайте в этой же книге: Acknowledgments 11 страница | Acknowledgments 12 страница | Acknowledgments 13 страница | Acknowledgments 14 страница | Acknowledgments 15 страница | Acknowledgments 16 страница | About the Author | How to Do Away with the Dangers of Outsourcing | OUTSOURCING HAS ITS COSTS |
<== предыдущая страница | следующая страница ==>
THE AUTHORITATIVE SOLUTION| Пәннің мазмұны

mybiblioteka.su - 2015-2024 год. (0.015 сек.)