Читайте также: |
|
Module 2. Analitic geometry. Introduction to Calculus
Individual Home Task
Variant 1
1. For the triangle with the vertices А (-3;5), В (11;-12), С (-7;12) find:
a) length of the side АВ;
b) equation of the line АМ which parallel to the side ВС;
c) the equation of the hieght ВF;
d) the equation of the median AD;
e) the interior angle ;
f) the coordinates of the points N and K, which divides the greater sige of the triangular into three equal parts;
g) area of the treangular АВС.
2. There are given the points М 1(3;-1;2), M 2(2;4;-2), planes Р 1: 2x+3y-4z+5=0,
Р 2: x-y+z+2=0 and lines L 1: ; L 2: .
а) Write down the equation of the straight line passing through the points М 1 і M 2;
b) Find the acute angle between the lines L 1 і L 2;
c) Through the point M 2 draw the plane parallel to the plane Р 2;
d) Find the acute angle between the planes Р 1 і Р 2;
e) Find the distance from the point М 1 to the plane Р 2;
f) Through the point M 2 draw the line parallel to the line L 2;
g) Find the acute angle between the line L 2 and the plane Р 2;
h) Through the point М 1 draw the line perpendicular to the plane Р 1;
i) Write down the equation of the plane passing through the point М 1 and perpendicular to the planes Р 1 and Р 2;
j) Write down the canonic equation of the line which is the concurent of two planes Р 1 and Р 2.
3. Calculate the limits: а) ; b) ;
c) ; d) .
4. Calculate the limits: а) ; b). .
5. Investigate the function for continuity: .
Module 2. Analitic geometry. Introduction to Calculus
Individual Home Task
Variant 2
1. For the triangle with the vertices А (-3;4), В (-4;-3), С (8;1) find:
a) length of the side АВ;
b) equation of the line АМ which parallel to the side ВС;
c) the equation of the hieght ВF;
d) the equation of the median AD;
e) the interior angle ;
f) the coordinates of the points N and K, which divides the greater sige of the triangular into three equal parts;
g) area of the treangular АВС.
2. There are given the points М 1(3;1;–4), M 2(1;–3;2), of the plane Р 1: 2 x – y – z + 4=0,
Р 2: x -4 y +5 z -1=0 and lines L 1: ; L 2: .
а) Write down the equation of the straight line passing through the points М 1 and M 2;
b) Find the acute angle between the lines L 1 and L 2;
c) Through the point M 2 draw the plane parallel to the plane Р 2;
d) Find the acute angle between the planes Р 1 and Р 2;
e) Find the distance from the point М 1 to the plane Р 2;
f) Through the point M 2 draw the line parallel to the line L 2;
g) Find the acute angle between the line L 2 and the plane Р 2;
h) Through the point М 1 draw the line perpendicular to the plane Р 1;
i) Write down the equation of the plane passing through the point М 1 and perpendicular to the planes Р 1 and Р 2;
j) Write down the canonic equation of the line which is the concurent of two planes Р 1 and Р 2.
3. Calculate the limits: а) ; b) ;
c) ; d) .
4. Calculate the limits: а) ; b) .
5. Investigate the function for continuity.
Module 2. Analitic geometry. Introduction to Calculus
Дата добавления: 2015-10-28; просмотров: 97 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Схема строения нефрона (А), мальпигиева тельца(Б) и эпителия различных отделов канальца нефрона (В). | | | Individual Home Task |