Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Производные функций одной переменной.

Читайте также:
  1. A) отличие от сферы частичных функций личности;
  2. B) которые могут быть в пределах одной и той же личности;
  3. II. Клетки крови и их производные
  4. II. Отнесение опасных отходов к классу опасности для ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ расчетным методом
  5. IV Международной командной педагогической олимпиады-универсиады
  6. XI. СОСТАВЛЕНИЕ СВОДНОЙ КОРРЕКТИРОВОЧНОЙ ТАБЛИЦЫ
  7. XXII Всемирный конгресс международной ассоциации политической науки, Мадрид, 8-12 июля 2012 г.

 

Рекомендую следующий порядок изучения темы: во-первых, эта статья. Затем следует прочитать важнейший урок Производная сложной функции. Эти два базовых занятия позволят поднять Ваши навыки с полного нуля. Далее можно будет ознакомиться с более сложными производными в статье Сложные производные. Логарифмическая производная. Если планка окажется слишком высока, то сначала прочитайте вещь Простейшие типовые задачи с производной. Помимо нового материала, на уроке рассмотрены другие, более простые типы производных, и есть прекрасная возможность улучшить свою технику дифференцирования. Кроме того, в контрольных работах почти всегда встречаются задания на нахождение производных функций, которые заданы неявно или параметрически. Такой урок тоже есть: Производные неявных и параметрически заданных функций.

Я попытаюсь в доступной форме, шаг за шагом, научить Вас находить производные функций. Вся информация изложена подробно, простыми словами.

Собственно, сразу рассмотрим пример:

Пример 1

Найти производную функции

Решение:

Это простейший пример, пожалуйста, найдите его в таблице производных элементарных функций. Теперь посмотрим на решение и проанализируем, что же произошло? А произошла следующая вещь: у нас была функция , которая в результате решения превратилась в функцию .

Говоря совсем просто, для того чтобы найти производную функции, нужно по определенным правилам превратить её в другую функцию. Посмотрите еще раз на таблицу производных – там функции превращаются в другие функции. Единственным исключением является экспоненциальная функция , которая превращается сама в себя. Операция нахождения производной называетсядифференцированием.

Обозначения: Производную обозначают или

Вернемся к нашей таблице производных. Из данной таблицы желательно запомнить наизусть: правила дифференцирования и производные некоторых элементарных функций, особенно:

производную константы:
, где – постоянное число;

производную степенной функции:
, в частности: , , .

Зачем запоминать? Данные знания являются элементарными знаниями о производных. И если Вы не сможете ответить преподавателю на вопрос «Чему равна производная числа?», то учеба в ВУЗе может для Вас закончиться (лично знаком с двумя реальными случаями из жизни). Кроме того, это наиболее распространенные формулы, которыми приходится пользоваться практически каждый раз, когда мы сталкиваемся с производными.

В реальности простые табличные примеры – редкость, обычно при нахождении производных сначала используются правила дифференцирования, а затем – таблица производных элементарных функций.

 

7.1.1. Правила дифференцирования:

 


Дата добавления: 2015-07-08; просмотров: 140 | Нарушение авторских прав


Читайте в этой же книге: График логарифмической функции | Графики тригонометрических функций | Графики тангенса и котангенса | Графики обратных тригонометрических функций | Пределы функций | Основные методы вычисления пределов | Когда дан любой предел, сначала просто пытаемся подставить число в функцию. | Метод умножения числителя и знаменателя на сопряженное выражение | Первый замечательный предел | Второй замечательный предел |
<== предыдущая страница | следующая страница ==>
При этом сам значок предела перемещаем в показатель.| Производная суммы равна сумме производных

mybiblioteka.su - 2015-2025 год. (0.006 сек.)