Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Особенности расчета катушек.

Читайте также:
  1. II. Порядок расчета платы за коммунальные услуги
  2. II. СПОСОБЫ РАСЧЕТА ТОЧКИ ОТДЕЛЕНИЯ ПАРАШЮТИСТОВ ОТ ВОЗДУШНОГО СУДНА.
  3. III. ХАРАКТЕРНЫЕ ОСОБЕННОСТИ УЧЕНИЙ ВЕАИКОГО СИМВОЛА
  4. VI. Порядок расчета и внесения платы за коммунальные услуги
  5. XI. Особенности сетевого газоснабжения потребителей
  6. А. Особенности просадочных, макропористых грунтов.
  7. Акты применения норм права: понятие, особенности, виды

Катушку можно рассматривать как сложный контур, имеющий форму цилиндрической, призматической, плоской или иной спирали, витки которой в зависимости от типа катушки имеют ход в осевом или перпендикулярном к оси направлении. Однако расчет индуктивности катушек с учетом спиральности витков связан с весьма значительными трудностями. Поэтому при расчете индуктивностей спиральностью витков, как правило, пренебрегают и рассматривают катушку как совокупность отдельных замкнутых плоских витков той или иной формы, лежащих в одной или нескольких параллельных плоскостях. Подобное упрощение задачи существенно облегчает расчет и вместе с тем, как показывает специальное исследование, приводит лишь к весьма незначительной погрешности.

Все приводимые ранее формулы для индуктивности катушек выведены в пренебрежении спиральностью витков.

Расчет собственных и взаимных индуктивностей катушек может быть произведен двумя принципиально отличными друг от друга методами, которые назовем соответственно методом суммирования и методом массивного витка.

При расчете методом суммирования собственная индуктивность катушки вычисляется как сумма собственных и взаимных индуктивностей всех ее витков; взаимная индуктивность двух катушек определяется как сумма взаимных индуктивностей всех витков одной катушки со всеми витками другой. Этот метод, приводящий для многослойных катушек к весьма сложным формулам, обычно не имеет никаких преимуществ по сравнению с методом массивного витка и поэтому в настоящее время почти не применяется.

При расчете индуктивностей методом массивного витка индуктивности катушек сравнивают с индуктивностями соответствующих массивных витков (для цилиндрических катушек – массивных колец), имеющих такую же форму и размеру, как обмотка рассматриваемых катушек.

Для возможности сравнения коэффициент заполнения катушек принимают равным единице, т.е. при расчете предполагают, что витки имеют бесконечно тонкую изоляцию и плотно заполняют все пространство, занятое обмоткой.

При сделанном предположении одной и той же плотности тока магнитные поля катушки и соответствующего массивного витка будут одинаковы, а следовательно будут одинаковы и интегралы, входящие в формулу (2) для полного потока, сцепляющегося с катушкой (или соответственно с массивным витком). С другой стороны, при равенстве плотностей тока ток в катушке, имеющей ω витков, в ω раз меньше тока в соответствующем массивном витке, и из формулы

L = (18)

следует, что индуктивность Lp «расчетной» катушки (т.е. катушки с коэффициентом заполнения, равным единице) в ω2 раз больше индуктивности L’ соответствующего массивного витка:

Lp = ω2L’. (19)

Точно также взаимная индуктивность Mp двух «расчетных» катушек, имеющих ω и W витков, в ωW раз больше взаимной индуктивности M’ соответствующих массивных витков:

Mp = ωWM’. (20)

Формулы (19) и (20) сводят расчет индуктивностей катушек к расчету индуктивностей соответствующих массивных витков. Следует, однако, иметь в виду, что действительные индуктивности катушек несколько отличаются от рассчитанных по этим формулам, так как витки обмотки обычно имеют не прямоугольное, а круговое поперечное сечение, и между отдельными витками всегда имеется некоторая воздушная или иная прослойка, необходимая для изоляции одного витка от другого. Это обстоятельство в большинстве случаев почти не сказывается на результаты расчета взаимной индуктивности катушек. Однако при расчете собственных индуктивностей различие между индуктивностями действительной и расчетной катушек иногда приходится учитывать, для чего в формулу (19) вносят поправку, обычно называемую поправкой на изоляцию. Если обозначить эту поправку через ΔL, то вместо (19) будем иметь

L = Lp + ΔL = ω2L’ + ΔL. (21)

 

Отличие действительной индуктивности катушки от ее расчетной индуктивности обусловлено тем, что расчетные витки имеют не такое поперечное сечение, как действительные. Если учесть, что индуктивность катушки можно рассматривать как сумму собственных и взаимных индуктивностей ее витков, то поправку ΔL можно представит в виде:

ΔL = Δ1L + Δ2L, (22)

где первая поправка (Δ1L) учитывает различие между собственными индуктивностями действительных и расчетных витков, а вторая (Δ2L) – различие между их взаимными индуктивностями.

Выражения для поправок Δ1L и Δ2L зависят от формы витков и их поперечных сечений, а также от типа обмотки.

 

 


Дата добавления: 2015-07-08; просмотров: 130 | Нарушение авторских прав


Читайте в этой же книге: А) магнитного потока Ф; | Проведем простой опыт для доказательства того, что ток, получаемый от электростанций, действительно переменный (постоянно меняющий свое направление). | Прохождение переменного тока через катушку с большой индуктивностью. | Явление самоиндукции | Ферромагнетики и магнитное поле катушки с ферромагнитным сердечником | Индуктивность катушки с ферромагнитным сердечником | Нелинейные искажения тока | Общее решение графо-аналитическим способом. | Расчет индуктивностей по заданной форме, размерам и взаимному расположению контуров. | Выражение для индуктивности сложных контуров. Индуктивности участков. |
<== предыдущая страница | следующая страница ==>
Теорема о четырех прямоугольниках и основанный на ней метод.| Проведем исследования формы тока в катушке модуля ФПЭ-7М с обработкой результатов на персональном компьютере, для того, чтобы наглядно увидеть эффект нелинейности.

mybiblioteka.su - 2015-2024 год. (0.006 сек.)