Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Уравнение эвольвенты

Читайте также:
  1. В общем случае многокомпонентных систем в соответствии с термодинамическим уравнением Гиббса при адсорбции изменение Поверхностное натяжение
  2. Гармонические колебания. Дифференциальное уравнение гармонических колебаний.
  3. Двухгрупповое уравнение реактора
  4. Динамика адсорбции. Уравнение Шилова.
  5. Дифференциальное уравнение гармонических колебаний
  6. Дифференциальное уравнение первого порядка с разделяющимися переменными
  7. Звездное и солнечное времена. Основная формула времени и уравнение времени.

Для получения уравнения эвольвенты обратимся к рис. 3.3. Положение произвольной точки Ay эвольвенты в полярной системе координат определяется двумя координатами относительно её начального радиус-вектора OA0 (или OC0): длиной радиус-вектора R y и углом θy. Радиус-вектор Ry определим из прямоугольного треугольника OAyCy:

Для определения полярного угла θ y сначала выразим длину дуги основной окружности через её радиус и центральный угол:

Выразим теперь противолежащий углу αy катет AyCy в ∆OAyCy:

На основании четвёртого свойства эвольвенты имеем

 

Подставляя в это равенство соответствующие выражения и решая его относительно θ y, получаем

.

В этих математических выражениях и на рис. 3.3 угол αy называется профильным углом эвольвенты. Разность между тангенсом какого-либо угла и самим углом называется эвольвентной функцией и обозначается тремя первыми буквами латинского названия эвольвенты involute, т. е. inv, так что окончательно уравнение имеет вид:

θy = invαy.

В математических справочниках приводятся таблицы эвольвентной функции, в которых аргумент αy изменяется от нуля до нескольких десятков градусов.

 


Дата добавления: 2015-07-08; просмотров: 403 | Нарушение авторских прав


Читайте в этой же книге: Расчет подвижности плоского механизма | Группы Ассура и их классификация | Замена высших пар в плоских механизмах | Избыточные (повторяющиеся) связи и местные подвижности в механизмах | Понятие о передаточном отношении | Передаточное отношение простой зубчатой передачи | Механизм с рядовым соединением колес | Типовая схема эпициклического механизма | Аналитический расчет кинематики | Графический расчет кинематики |
<== предыдущая страница | следующая страница ==>
Основной закон зацепления| Элементы зубчатого колеса

mybiblioteka.su - 2015-2024 год. (0.006 сек.)