Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Динамические звенья второго порядка

Читайте также:
  1. Апериодическое звено 1-го порядка
  2. Апериодическое звено 2-го порядка
  3. Апериодическое звено первого порядка (инерционное)
  4. Аэродинамические силы и продольный момент изолированного крыла
  5. Аэродинамические управляющие моменты тангажа
  6. ВТСП второго поколения
  7. Г л а в а II Преступления против порядка управления

Дифференциальные уравнения таких звеньев имеют общий вид

,

а передаточная функция – W(p) = K / (T22 p2 + T1 p + 1).

В зависимости от соотношения постоянных времени Т1 и Т2:

а) Если , то звено называется апериодическим второго порядка.


Переходной процесс представляет собой S-образную кривую с перегибом в т.О.

б) Если , то звено называется колебательным.


Пример: 1, 2 – валы; 3 – пружина; 4 – маховик; 5 – замедлитель, j - угол поворота.

 

 

в) Если Т1 = 0 (нет демпфирования), то имеем консервативное звено

.

Имеем гармонические незатухающие колебания (в природе такого звена нет).

 

г) Если Т1 < 0 – это неустойчивое колебательное звено с расходящимися незатухающими колебаниями.


 

 

Классификацию динамических звеньев второго порядка можно графически изобразить таким образом

 

 
 

 


Дата добавления: 2015-07-08; просмотров: 196 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Реальное интегрирующее звено| АНАЛИЗ ПРОГРАММ ИПОТЕЧНОГО КРЕДИТОВАНИЯ ВЕДУЩИХ РОССИЙСКИХ БАНКОВ

mybiblioteka.su - 2015-2024 год. (0.006 сек.)