Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Методика 1. Расчет описательной статистики

Читайте также:
  1. II. Отнесение опасных отходов к классу опасности для ОКРУЖАЮЩЕЙ ПРИРОДНОЙ СРЕДЫ расчетным методом
  2. II. Порядок расчета платы за коммунальные услуги
  3. II. СПОСОБЫ РАСЧЕТА ТОЧКИ ОТДЕЛЕНИЯ ПАРАШЮТИСТОВ ОТ ВОЗДУШНОГО СУДНА.
  4. VI. Порядок расчета и внесения платы за коммунальные услуги
  5. VI. ПРИМЕРНАЯ МЕТОДИКА ОБУЧЕНИЯ УПРАЖНЕНИЯМ КУРСА СТРЕЛЬБ
  6. А) расчеты с работниками банка по подотчетным суммам
  7. А). Расчет электроснабжения

Рассмотрим пример анализа рынка образовательных услуг, а именно оплаты за обучение в Вузах города на экономические специальности. Вводим на рабочий лист в Microsoft Excel данные таблицы 1.

Таблица 1

Распределение группы студентов по размеру оплаты за образовательные услуги в регионе

Стоимость образовательных услуг, тыс.руб. Средняя стоимость образовательных услуг, тыс.руб. Количество респондентов  
 
14-17 15,5    
17-20 18,5    
20-23 21,5    
23-26 24,5    
26-29 27,5    
29-32 30,5    
32-35 33,5    

1. В меню выбираем: Сервис Анализ данных Описательная статистика ОК. Появляется окно «Описательная статистика» (рис. 1, 2).

 

Рис. 1. Окно «Анализ данных»

 

Рис. 2. Окно «Описательная статистика»

2. В данном окне выбираем команды: Входной интервал – диапазон ячеек со значениями Средняя стоимость образовательных услуг и Количество респондентов (В3:С9); Группировка – по столбцам; Итоговая статистика – активировать, Уровень надежности – активизировать; Уровень надежности – 95%; Выходной интервал – А12; ОК (рис. 3).

 
 

 


 

Рис. 3. Окно «Описательная статистка» с необходимыми командами.

При появлении окна с сообщением «Выходной интервал накладывается на имеющиеся данные» - ОК.

В результате указанных действий Microsoft Excel осуществляет вывод таблицы описательных статистик (табл. 2).

Таблица 2

Описательная статистика

Столбец 1   Столбец 2  
Среднее 24,5 Среднее 11,42857
Стандартная ошибка 2,44949 Стандартная ошибка 3,524453
Медиана 24,5 Медиана  
Мода   Мода  
Стандартное отклонение 6,480741 Стандартное отклонение 9,324826
Дисперсия выборки   Дисперсия выборки 86,95238
Эксцесс -1,2 Эксцесс -1,36569
Асимметричность   Асимметричность 0,529414
Интервал   Интервал  
Минимум 15,5 Минимум  
Максимум 33,5 Максимум  
Сумма 171,5 Сумма  
Счет   Счет  
Уровень надежности(95,4%) 6,1444 Уровень надежности(95,4%) 8,840882

 

Интерпретация терминов таблицы 2 следующая: Среднее – средняя арифметическая величина признака в выборке, вычисленная по несгруппированным данным; Стандартная ошибка – средняя ошибка выборки – среднее квадратическое отклонение выборочной средней от математического ожидания генеральной средней; Медиана – значение признака, приходящееся на середину ранжированного ряда выборочных данных; Мода – значение признака, повторяющееся в выборке с наибольшей частотой; Стандартное отклонение – генеральное среднее квадратическое отклонение, оцененное по выборке; Дисперсия выборки – генеральная дисперсия, оцененная по выборке; Эксцесс – коэффициент эксцесса, оценивающий по выборке значение эксцесса в генеральной совокупности; Ассиметричность – коэффициент ассиметрии, оценивающий по выборке величину ассиметрии в генеральной совокупности; Интервал – размах вариации в выборке; Минимум - минимальное значение признака в выборке; Максимум – максимальное значен ие признака в выборке; Сумма – суммарное значение элементов выборки; Счет – объем выборки; Уровень надежности (95,4%) – предельная ошибка выборки, оцененная с заданным уровнем надежности.

Метод 2. Расчет предельной ошибки выборки при Р=0,997

1. В меню выбираем: Сервис Анализ данных Описательная статистика ОК. Появляется окно «Описательная статистика».

2. В данном окне выбираем команды: Входной интервал – диапазон ячеек со значениями Средняя стоимость образовательных услуг и Количество респондентов (В3:С9); Итоговая статистика – снять флажок, Уровень надежности – активизировать; Уровень надежности – 99,7%; Выходной интервал – А29; ОК (рис. 4).

 

 

Рис. 4. Окно «Описательная статистка» с необходимыми командами

При появлении окна с сообщением «Выходной интервал накладывается на имеющиеся данные» - ОК.

Таблица 3

Предельная ошибка выборки

Столбец 1   Столбец 2  
Уровень надежности(99,7%) 11,75814 Уровень надежности(99,7%) 16,91822

Метод 3. Расчет выборочного стандартного отклонения для признака Средняя стоимость образовательных услуг ()

1. Установить курсор в ячейку В33 для среднего квадратического отклонения первого признака (средней стоимости образовательных услуг, тыс.руб.).

2. Вставка Функция. Открывается окно «Мастер функций шаг 1 из 2» (рис. 5).

 
 

 


Рис. 5. Выбор команды «Функция»

 

3. Категория Статистические СТАНДОТКЛОНП ОК (рис. 6)

       
   

 

 


 

Рис. 6. Окно «Мастер функций шаг 1 из 2»

4. Появляется окно «Аргументы функции». Число 1 – диапазон ячеек таблицы 1, содержащих значение первого признака (В2:В9) ОК (рис. 7). В ячейке В 33 выводится значение стандартного отклонения (6,48).

 
 

 


Рис. 7. Окно «Аргументы функции»

 

Метод 4. Расчет выборочной дисперсии для признака Средняя стоимость образовательных услуг ( 2)

1. Установить курсор в ячейку В34 для выборочной дисперсии первого признака (средней стоимости образовательных услуг, тыс.руб.).

2. Вставка Функция. Открывается окно «Мастер функций шаг 1 из 2»

3. Категория Статистические ДИСПР ОК (рис. 8).

4. Появляется окно «Аргументы функции». Число 1 – диапазон ячеек таблицы № 1, содержащих значение первого признака (В2:В9) ОК. В ячейке В 34 выводится значение дисперсии (42).

 
 

 

 


Рис. 8. Окно «Мастер функций шаг 1 из 2»

Метод 5. Расчет выборочного среднего линейного отклонения для признака Средняя стоимость образовательных услуг (d)

1. Установить курсор в ячейку В35 для выборочной дисперсии первого признака (средней стоимости образовательных услуг, тыс.руб.).

2. Вставка Функция. Открывается окно «Мастер функций шаг 1 из 2»

3. Категория Статистические СРОТКЛ ОК.

4. Появляется окно «Аргументы функции». Число 1 – диапазон ячеек таблицы № 1, содержащих значение первого признака (В2:В9) ОК. В ячейке В 35 выводится значение дисперсии (5,14).

Метод 6. Расчет коэффициента вариации по признаку Средняя стоимость образовательных услуг (V)

1. Установить курсор в ячейку В36 для выборочной дисперсии первого признака (средней стоимости образовательных услуг, тыс.руб.).

2. В активизированную ячейку ввести формулу = В33 / В 14 * 100. Enter. (рис. 9).

3. В ячейке В 36 рассчитывается значение коэффициента вариации (26,452).

 

 

Рис. 9. Ввод формулы для вычисления коэффициента вариации

Таблица 4

Расчетные значения описательных параметров выборочной совокупности

Стандартное отклонение 6,480741
Дисперсия  
Среднее линейное отклонение 5,142857
Коэффициент вариации 26,452

Для вычисления показателей статистики используются следующие формулы:

Мода – представляет собой значение изучаемого признака повторяющееся с наибольшей частотой.

Мода рассчитывается по формуле:

 
 

 

 


где хо – нижняя граница модального интервала; h – величина модального интервала; fm – частота модального интервала; fm-1 – частота интервала, предшествующего модальному; fm+1 – частота интервала, следующего за модальным.

Медиана – значение признака, приходящееся на середину ранжированной совокупности.

Медиана находится по формуле:

 

где хо – нижняя граница интервала, который содержит медиану; h – величина медианного интервала; fm – частота медианного интервала; - сумма частот или число членов ряда; Sm-1 – сумма накопленных частот интервалов, предшествующих медианному.

Средняя арифметическая взвешенная рассчитывается по формуле:

 
 

 


где: - сумма произведений величин признаков на их частоты; - сумма частот.

Размах вариации представляет собой разность между максимальной и минимальной величиной признака.

R = Xmax – Xmin;

Среднее линейное отклонение представляет собой среднюю из абсолютных значений отклонений отдельных вариантов от их средней, которое рассчитывается по формуле:

 

где хi – значение показателя; Х – среднее арифметическое значение; n – сумма частот.

Дисперсия – это средний квадрат отклонений значений признака от их средней величины. Дисперсия находится по формуле:

 

Среднеквадратическое отклонение определяется как квадратный корень из дисперсии:

Коэффициент вариации измеряет относительную колеблемость (относительно среднего уровня).

Определяем коэффициент вариации по формуле:

 
 

 


Если значение рассчитанного V < 33%, то совокупность по рассчитанному признаку можно считать однородной.

Средняя ошибка выборки маркетинговых исследований показывает среднюю величину всех возможных расхождений выборочной и генеральной средней.

Величина средней квадратической стандартной ошибки простой случайной повторной выборки определяется по формуле:

 


Предельная ошибка выборки характеризуется наибольшим расхождением между характеристиками генеральной и выборочной совокупности рассчитывается по формуле:

 

где t – коэффициент доверия, зависящий от вероятности, с которой гарантируется предельная ошибка выборки. Ф (t) = Р/2 = 0,95 / 2 = 0,475, т.е. по таблице Лапласа t = 1,96.

 

 


Дата добавления: 2015-07-08; просмотров: 166 | Нарушение авторских прав


Читайте в этой же книге: Технология оценки тесноты связи исследуемых признаков на основе линейного коэффициента корреляции | Технология прогноза объема продаж с помощью Мастер функций | Построение линейного и нелинейного графика временного ряда | Построение и графическое отображение интервального вариационного ряда распределения (гистограмма) | исследованиях |
<== предыдущая страница | следующая страница ==>
Технология определения статистических показателей при анализе маркетинговой информации| В Microsoft Excel

mybiblioteka.su - 2015-2024 год. (0.017 сек.)