Читайте также:
|
|
При изучении теории обратить внимание на следующее.
Переменный синусоидальный ток может быть описан гармонической функцией или вектором, вращающимся на комплексной плоскости .
Для всех линейных элементов цепи (в том числе для элементов со взаимной индуктивностью) справедлив закон Ома в комплексной форма записи: , , , . Множители при токе называются, соответственно, активным, индуктивным и ёмкостным сопротивлениями, записанными в комплексном виде. В общем виде комплексное сопротивление записывается единой буквой Z: , , , . В цепях с последовательным соединением элементов сопротивления складываются в комплексном виде. Величины, обратные комплексным сопротивлениям, называются соответствующими комплексными проводимостями. В цепях с параллельным соединениям элементов складываются проводимости.
Для цепей переменного тока справедливы законы Кирхгофа в комплексной форме записи , . Сущностное отличие законов Кирхгофа для цепей постоянного тока от законов Кирхгофа для цепей постоянного тока заключается в том, что для цепей постоянного тока справедливо арифметическое сложение величин, а для цепей переменного тока – геометрическое (векторное) сложение величин.
Два участка электрической цепи называются индуктивно – связанными, если имеют общее магнитное поле. То есть каждый из участков цепи находится в магнитном поле, созданном током, протекающим по другому участку. В теории электрических цепей параметром, характеризующим способность элемента создавать магнитное поле, является индуктивность указанного элемента L. Соответственно, параметром взаимной связи элементов является взаимная индуктивность M, определяемая через коэффициент связи двух индуктивных элементов k: .
Мгновенное значение мощности в цепях синусоидального тока рассчитывают аналогично расчёту мгновенного значения мощности в цепях постоянного тока .
В комплексном виде скалярная мощность определяется по формуле , где - сопряжённое значение тока, Р – активная мощность, Q – реактивная мощность.
Для наглядного изображения полученных величин тока и напряжения используют векторные и топографические векторные диаграммы на комплексной плоскости. Векторная диаграмма строится из начала координат и показывает только величину и фазу исследуемой величины. Топографическая векторная диаграмма это векторная диаграмма цепи, построенная с учётом топологии цепи. Каждому узлу цепи соответствует своя точка на топографической векторной диаграмме.
Дата добавления: 2015-07-08; просмотров: 161 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Исследование электрической цепи с последовательным соединением RLC элементов | | | Виртуальные исследования |