Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Элементарные частицы

Читайте также:
  1. ГЛАВА 1. ЭЛЕМЕНТАРНЫЕ ПРЕДПОСЫЛКИ ЭВОЛЮЦИОННОГО ПРОЦЕССА: ФОРМЫ ИЗМЕНЧИВОСТИ ОРГАНИЗМОВ
  2. Примерно перечисляющие 「や」 и 「とか」 частицы
  3. Тема 11 Элементарные частицы
  4. ЧАСТИЦЫ
  5. ЧАСТИЦЫ Смысловые оттенки
  6. Частицы, возможности и сознание: краткий обзор квантовой реальности
  7. Частицы, усекающие два глагола

К физике атомного ядра тесно прилегает физика элементарных частиц. Эта область современной науки базируется на квантовых представлениях и в своем развитии всё дальше проникает в глубину материи, открывая загадочный мир ее первооснов. В физике элементарных частиц чрезвычайно велика роль теории. В силу невозможности прямого наблюдения таких материальных объектов их образы ассоциируются с математическими уравнениями, с наложенными на них запрещающими и разрешающими правилами.

По определению элементарные частицы – это первичные, неразложимые образования, из которых, по предположению, состоит вся материя. На самом же деле этот термин употребляется в более широком смысле – для обозначения обширной группы микрочастиц материи, структурно не объединенных в ядра и атомы. Большинство объектов исследования физики элементарных частиц не отвечают строгому определению элементарности, поскольку представляют собой составные системы. Поэтому частицы, удовлетворяющие этому требованию, принято называть истинно элементарными.

Первой элементарной частицей, открытой в процессе изучения микромира еще в конце XIX в., был электрон. Следующим был открыт протон (1919), затем пришла очередь нейтрона, открытого в 1932 г. Существование позитрона теоретически было предсказано П. Дираком в 1931 г., и в 1932 г. этот положительно заряженный «двойник» электрона был обнаружен в космических лучах Карлом Андерсоном. Предположение о существовании в природе нейтрино было выдвинуто В. Паули в 1930 г., а экспериментально оно было обнаружено только в 1953 г. В составе космических лучей в 1936 г. были найдены мю-мезоны (мюоны) – частицы обоих знаков электрического заряда с массой около 200 масс электрона. Во всем остальном свойства мюонов очень близки к свойствам электрона и позитрона. Также в космических лучах в 1947 г. были открыты положительный и отрицательный пи-мезоны, существование которых было предсказано японским физиком Хидэки Юкавой в 1935 г. В дальнейшем выяснилось, что существует также нейтральный пи-мезон.

В начале 50-х гг. была открыта большая группа частиц с весьма необычными свойствами, что побудило назвать их «странными». Первые частицы этой группы были обнаружены в космических лучах, это К-мезоны обоих знаков и L -гиперон (лямбда-гиперон). Отметим, что мезоны получили свое название от греч. «средний, промежуточный» в силу того, что массы первых открытых частиц этого типа (пи-мезоны, мю-мезоны) имеют массу, промежуточную между массой нуклона и электрона. Гипероны же ведут свое название от греч. «сверх, выше», поскольку их массы превышают массу нуклона. Последующие открытия странных частиц делались уже на ускорителях заряженных частиц, которые стали основным инструментом изучения элементарных частиц.

Так были открыты антипротон, антинейтрон и ряд гиперонов. В 60-е гг. было обнаружено значительное число частиц с крайне малым временем жизни, которые получили название резонансов. Как выяснилось, к резонансам относится большинство известных элементарных частиц. В середине 70-х гг. было открыто новое семейство элементарных частиц, получивших романтическое название «очарованных», а в начале 80-х – семейства «красивых» частиц и так называемых промежуточныхвекторных бозонов. Открытие этих частиц явилось блестящим подтверждением теории, основанной на кварковой модели элементарных частиц, которая предсказала существование новых частиц задолго до их обнаружения.

Таким образом, за время после открытия первой элементарной частицы – электрона – в природе выявлено множество (около 400) микрочастиц материи, и процесс открытия новых частиц продолжается. Оказалось, что мир элементарных частиц устроен весьма и весьма сложно, а их свойства разнообразны и зачастую крайне неожиданны.

Все элементарные частицы являются материальными образованиями чрезвычайно малых масс и размеров. Большинство из них имеют массы порядка массы протона (~10–24 г) и размеры порядка 10–13 м. Это определяет сугубо квантовую специфику их поведения. Важное квантовое свойство всех элементарных частиц (включая и относящийся к ним фотон) состоит в том, что все процессы с ними происходят в виде последовательности актов их испускания и поглощения (способность рождаться и уничтожаться при взаимодействии с другими частицами). Процессы с участием элементарных частиц относятся ко всем четырем видам фундаментального взаимодействия: сильному, электромагнитному, слабому и гравитационному. Сильным взаимодействием обусловлена связь нуклонов в атомном ядре. Электромагнитное взаимодействие обеспечивает связь электронов с ядрами в атоме, а также связь атомов в молекулах. Слабоевзаимодействие вызывает, в частности, распад квазистабильных (т. е. относительно долгоживущих) частиц, имеющих время жизни в пределах
10–12 ÷ 10–14 с. Гравитационное взаимодействие на характерных для элементарных частиц расстояниях ~10–13 см, в силу малости их массы, имеет крайне малую интенсивность, однако может оказаться существенным на сверхмалых расстояниях. Интенсивности взаимодействий: сильного, электромагнитного, слабого и гравитационного – при умеренной энергии процессов относятся соответственно как 1: 10–2: 10–10 : 10–38. Вообще же с ростом энергии частиц это соотношение изменяется.

Элементарные частицы классифицируют по различным признакам, и надо сказать, что в целом принятая их классификация достаточно сложна.

В зависимости от участия в различных видах взаимодействия все известные частицы делят на две основные группы: адроны и лептоны.

Адроны участвуют во всех видах взаимодействия, включая сильное. Они получили свое название от греч. «большой, сильный».

Лептоны не участвуют в сильном взаимодействии. Их название происходит от греч. «легкий, тонкий», поскольку массы известных до середины 70-х гг. частиц этого класса были заметно меньше масс всех других частиц (кроме фотона).

К адронам относятся все барионы (группа частиц с массой не меньше массы протона, названных так от греч. «тяжелый») и мезоны. Самым легким барионом является протон.

Лептонами являются, в частности, электрон и позитрон, мюоны обоих знаков, нейтрино трех видов (легкие, электрически нейтральные частицы, участвующие только в слабом и гравитационном взаимодействиях). Предполагается, что нейтрино столь же распространены в природе, как и фотоны, к их образованию приводит множество различных процессов. Отличительной особенностью нейтрино является его огромная проникающая способность, особенно при низких энергиях. Завершая классификацию по видам взаимодействия, следует отметить, что фотон принимает участие только в электромагнитном и гравитационном взаимодействиях. Кроме того, в соответствии с теоретическими моделями, направленными на объединение всех четырех видов взаимодействия, существует гипотетическая частица, переносящая гравитационное поле, которая получила название гравитон. Особенность гравитона состоит в том, что он (согласно теории) участвует только в гравитационном взаимодействии. Заметим, что теория связывает с квантовыми процессами гравитационного взаимодействия еще две гипотетические частицы – гравитино и гравифотон. Экспериментальное обнаружение гравитонов, т. е., по сути, гравитационного излучения, крайне затруднено из-за его чрезвычайно слабого взаимодействия с веществом.

В зависимости от времени жизни элементарные частицы разделяют на стабильные, квазистабильные и нестабильные (резонансы).

Стабильными частицами являются электрон (его время жизни τ > 1021 лет), протон (τ > 1031 лет), нейтрино и фотон. Квазистабильными считаются частицы, распадающиеся за счет электромагнитного и слабого взаимодействий, их время жизни τ > 10–20 c. Резонансы – частицы, распадающиеся в результате сильного взаимодействия, их время жизни находится в интервале 10 – 22 ÷10 – 24 с.

Распространенным является еще один вид подразделения элементарных частиц. Системы частиц с нулевым и целым спином подчиняются статистике БозеЭйнштейна, поэтому такие частицы принято называть бозонами. Совокупность же частиц с полуцелым спином описывается статистикой ФермиДирака, отсюда и название таких частиц – фермионы.

Каждая элементарная частица характеризуется определенным набором дискретных физических величин – квантовых чисел. Общими для всех частиц характеристиками являются масса m, время жизни τ, спин J и электрический заряд Q. Спин элементарных частиц принимает значения, равные целым или полуцелым кратным постоянной Планка. Электрические заряды частиц являются целыми кратными величине заряда электрона, считающегося элементарным электрическим зарядом.

Кроме того, элементарные частицы дополнительно характеризуются так называемыми внутренними квантовыми числами. Лептонам приписывается специфический лептонный заряд L = ±1, адроны с полуцелым спином несут барионный заряд В = ±1 (адроны с В = 0 образуют подгруппу мезонов).

Важной квантовой характеристикой адронов является внутренняя четность Р, принимающая значение ±1 и отражающая свойство симметрии волновой функции частицы относительно пространственной инверсии (зеркального отображения). Несмотря на несохранение четности при слабом взаимодействии, частицы с хорошей точностью принимают значения внутренней четности, равные либо +1, либо – 1.

Адроны, кроме того, подразделяются на обычные частицы (протон, нейтрон, пи-мезоны), странные частицы (К -мезоны, гипероны, некоторые резонансы), «очарованные» и «красивые» частицы. Им соответствуют особые квантовые числа: странность S, очарование С и красота b. Эти квантовые числа введены в соответствии с кварковой моделью для истолкования специфических процессов, характерных для этих частиц.

Среди адронов имеются группы (семейства) частиц с близкими массами, одинаковыми внутренними квантовыми числами, но различающиеся электрическим зарядом. Такие группы называются изотопическими мультиплетами и характеризуются общим квантовым числом – изотопическим спином, принимающим, как и обычный спин, целые и полуцелые значения.

В чем состоит уже неоднократно упоминавшаяся кварковая модель адронов?

Обнаружение закономерности группировки адронов в мультиплеты послужило основанием для предположения о существовании особых структурных образований, из которых построены адроны, – кварков. Допуская существование таких частиц, можно считать, что все адроны являются комбинациями кварков. Эта смелая и эвристически продуктивная гипотеза была выдвинута в 1964 г. американским физиком Марри Гелл-Маном. Суть ее состояла в предположении о наличии трех фундаментальных частиц с полуцелым спином, являющихся материалом для построения адронов: u -, d - и s -кварков. В дальнейшем на основе новых экспериментальных данных кварковая модель строения адронов пополнилась еще двумя кварками: «очарованным» (с) и «красивым» (b). Считается возможным существование и других типов кварков. Отличительная особенность кварков состоит в том, что они обладают дробными значениями электрического и барионного зарядов, не встречающимися ни у одной из известных частиц. С кварковой моделью согласуются все экспериментальные результаты по изучению элементарных частиц.

Согласно кварковой модели, барионы состоят из трех кварков, мезоны – из кварка и антикварка. Поскольку некоторые барионы являются комбинацией трех кварков в одном и том же состоянии, что запрещено принципом Паули (см. выше), каждому типу («аромату») кварка было приписано дополнительное внутреннее квантовое число «цвет». Кварк каждого типа («аромата» – u, d, s, c, b) может находиться в трех «цветовых» состояниях. В связи с использованием цветовых понятий теория сильного взаимодействия кварков получила название квантовой хромодинамики (от греч. «цвет»).

Можно считать, что кварки являются новыми элементарными частицами, причем они претендуют на роль истинно элементарных частиц для адронной формы материи. Однако остается неразрешенной проблема наблюдения свободных кварков и глюонов. Несмотря на систематические поиски в космических лучах, на ускорителях высокой энергии, обнаружить их в свободном состоянии пока так и не удалось. Имеются веские основания считать, что здесь физика столкнулась с особым явлением природы – так называемым удержанием кварков.

Дело в том, что существуют серьезные теоретические и экспериментальные доводы в пользу предположения о том, что силы взаимодействия кварков с расстоянием не ослабевают. Это означает, что для разделения кварков требуется бесконечно большая энергия, следовательно, появление кварков в свободном состоянии невозможно. Это обстоятельство придает кваркам статус совершенно особых структурных единиц вещества. Возможно, именно начиная с кварков принципиально невозможно опытное наблюдение ступеней дробления материи. Признание кварков в качестве реально существующих объектов материального мира не только олицетворяет собой яркий случай первичности идеи по отношению к существованию материальной сущности. Встает вопрос о пересмотре таблицы фундаментальных мировых постоянных, ибо заряд кварка втрое меньше заряда протона, а следовательно, и электрона.

Начиная с открытия позитрона наука встретилась с частицами антивещества. Сегодня очевидным является то, что для всех элементарных частиц с ненулевыми значениями хотя бы одного из квантовых чисел, таких как электрический заряд Q, лептонный заряд L, барионный заряд В, странность S, очарование С и красота b, существуют античастицы с теми же значениями массы, времени жизни, спина, но с противоположными знаками вышеуказанных квантовых чисел. Известны частицы, тождественные своим античастицам, они называются истиннонейтральными. Примерами истинно нейтральных частиц служат фотон и один из трех пи-мезонов (два других являются по отношению друг к другу частицей и античастицей).

Характерной особенностью взаимодействия частиц и античастиц является их аннигиляция при столкновении, т. е. взаимоуничтожение с образованием других частиц и выполнением законов сохранения энергии, импульса, заряда и т. п. Типичным примером аннигиляции пары является процесс превращения электрона и его античастицы – позитрона – в электромагнитное излучение (в фотоны или гамма-кванты). Аннигиляция пар происходит не только при электромагнитном взаимодействии, но и при сильном взаимодействии. При высоких энергиях легкие частицы могут аннигилировать с образованием более тяжелых частиц – при условии, что полная энергия аннигилирующих частиц превышает порог рождения тяжелых частиц (равный сумме их энергий покоя).

При сильном и электромагнитном взаимодействиях имеет место полная симметрия между частицами и их античастицами, т. е. все процессы, происходящие между первыми, возможны и для вторых. Поэтому антипротоны и антинейтроны могут образовывать ядра атомов антивещества, т. е. из античастиц в принципе вполне может быть построено антивещество. Возникает очевидный вопрос: если каждая частица имеет античастицу, то почему же в изученной области Вселенной отсутствуют скопления антивещества? Действительно, о наличии их во Вселенной, даже где-то «вблизи» Вселенной, можно было бы судить по мощному аннигиляционному излучению, приходящему к Земле из области соприкосновения вещества и антивещества. Однако современная астрофизика не располагает данными, которые позволили бы хотя бы предположить наличие во Вселенной областей, заполненных антивеществом.

Как же произошел во Вселенной выбор в пользу вещества и в ущерб антивеществу, хотя законы симметрии в основном выполняются? Причиной этого феномена, скорее всего, стало именно нарушение симметрии, т. е. флуктуация на уровне основ материи.

Ясно одно: если бы такой флуктуации не возникло, участь Вселенной была бы печальной – вся ее материя существовала бы в виде бесконечного облака фотонов, появившихся в результате аннигиляции частиц вещества и антивещества.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. В чем состоит феномен научных революций? Как он соотносится с общефилософскими законами?

2. Что такое научный метод? Каков его алгоритм? Какую роль при его реализации играет выдвижение гипотез?

3. Изложите смысл принципа соответствия, выдвинутого Н. Бором. Как он определяет судьбу устаревающих теорий?

4. В чем состоит базовая концепция И. Ньютона, положенная им в основу классической физики?

5. Какие обстоятельства привели к смене корпускулярной теории света волновой теорией?

6. Какие взаимодействия между материальными объектами имеют статус фундаментальных?

7. Какое противоречие вызвало необходимость разработки специальной теории относительности?

8. В чем разница между инерциальными и неинерциальными системами отсчета? Как возникла общая теория относительности?

9. В чем состоит принципиальное различие в движении макрообъектов и квантовых частиц? Каким образом атомы вещества испускают кванты излучения?

10. В чем состоит концепция корпускулярно-волнового дуализма материи? Имеется ли у электрона длина волны?


Дата добавления: 2015-07-08; просмотров: 378 | Нарушение авторских прав


Читайте в этой же книге: Развитие концепций пространства и времени | Пространство-время и законы сохранения | Классическая термодинамика. Понятие энтропии | Развитие представлений о природе света | Концепция относительности пространства-времени | Концепции атомизма и корпускулярно-волнового дуализма материи | Развитие концепции корпускулярно-волнового дуализма | Развитие представлений о строении атомов | Концепция квантовой механики | Фундаментальные принципы квантовой механики |
<== предыдущая страница | следующая страница ==>
Строение атомного ядра| ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

mybiblioteka.su - 2015-2024 год. (0.013 сек.)