Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Билет 17. Движение тела с одной закреплённой точкой

Вопрос 1.

Движение тела с одной закреплённой точкой. Регулярная прецессия свободного симметричного волчка.

Движение твердого тела с одной неподвижной точкой. В этом случае тело имеет три степени свободы – начала систем XYZ и x 0 y 0 z 0, введенных в начале лекции, можно совместить с точкой закрепления, а для описания движения тела использовать три угла Эйлера: j=j(t), y=y(t), q=q(t).

Для твердого тела с одной неподвижной точкой справедлива теорема Эйлера: твердое тело, закрепленное в одной точке, может быть переведено из одного положения в любое другое одним поворотом на некотjрый угол вокруг неподвижной оси, проходящей через точку закрепления. Cледствие из этой теоремы: движение закрепленного в точке твердого тела в каждый момент времени можно рассматривать как вращение вокруг мгновенной оси, проходящей через точку закрепления. Положение этой оси как в пространстве, так и относительно самого тела с течением времени общем случае меняется. Г М положений мгновенной оси вращения относительно неподвижной системы XYZ (или x 0 y 0 z 0) – это сложная коническая поверхность с вершиной в точке закрепления. В теоретической механике ее называют неподвижным аксоидом. Г М положений мгновенной оси вращения относительно подвижной системы xyz, жестко связанной с твердым телом, – это тоже коническая поверхность – подвижный аксоид. Линейная скорость произвольной точки твердого тела вокруг мгновенной оси: v=w´r, где r – радиус-вектор точки относительно начала системы XYZ (или x 0 y 0 z 0), совмещенного с точкой закрепления.

 

 

 
 

Эти уравнения наз. уравнениями Эйлера. В ряде случаев движение с одной закр. точкой можно представить как суперпозицию 2-х вращений вокруг пересекающихся осей, угловые скорости складываются векторно.

Регулярная прецессия свободного симметричного волчка. Рассмотрим тяжелый симметричный гироскоп, у которого неподвижная точка S (точка опоры о подставку) не совпадает с центром масс О (рис. 4.6). Момент силы тяжести относительно точки S: M=mg l sinq. Изменение момента импульса L определяется выражением: dL=Mdt. При этом и L, и ось волчка прецессируют вокруг вертикального направления с угловой скоростью W. Еще раз подчеркнем: делается допущение, что выполнено условие w>>W и что L постоянно направлен вдоль оси симметрии гироскопа.

dL=L sinqWdt, dL=W´L dt Þ M= dL=W´L.

Это соотношение позволяет определить направление прецессии при заданном направлении вращения волчка вокруг своей оси. Обратим внимание, что M определяет угловую скорость прецессии, а не угловое ускорение, поэтому мгновенное «выключение» M приводит к мгновенному же исчезновению прецессии, то есть прецессионное движение является безынерционным.

mglsinq=WJzw sinq Þ W=mgl/Jzw



Дата добавления: 2015-07-08; просмотров: 263 | Нарушение авторских прав


Читайте в этой же книге: Свободные гармоничесие колебания. Колебания с одной степенью свободы. Сложения колебаний. Биения. Фигуры Лиссажу. | Уравнение движения в релятивистской меканике. Импульс и энергия. Энергия покоя. | Затухающие колебания. Показатель (коэффициэнт) затухания, логарифмический декремент, добротность. | Билет 16. | Параметрические и автоколеьания. Пример. Работа внешней силы. | Вопрос 1. | Колебания системы с двумя степенями свободы. Нормальные колебания(моды). нормальные частоты. Примеры. | Закон сохранения момента импульса системы тел и его связь с изотропностью пространства. Примеры. | Вопрос 2. | Гироскопы. Прецессия гироскопа. Гироскопические силы. Потяние о нутационнм движении гироскопа. |
<== предыдущая страница | следующая страница ==>
Процесс установления колебаний| Билет 18.

mybiblioteka.su - 2015-2025 год. (0.005 сек.)