Читайте также: |
|
Проводниковый отдел анализаторов. Участие подкорковых образований в проведении и переработке афферентных возбуждений. Корковый отдел анализаторов. Процессы высшего коркового анализа афферентных возбуждений. Взаимодействие анализаторов.
Афферентные нейроны - это первые нейроны, которые участвуют в обработке сенсорной информации. Как правило, афферентные нейроны лежат в ганглиях (спинномозговые ганглии, ганглии головы и шеи, например, вестибулярный ганглий, спиральный ганглий, коленчатый ганглий и т.п.). Исключением являются фоторецепторы - их афферентные нейроны лежат непосредственно на сетчатке.
Следующий нейрон, принимающий участие в обработке информации, расположен в спинном, продолговатом или в среднем мозге. Отсюда идут пути к таламусу. Исключением из этого правила является обонятельный анализатор - после обонятельной луковицы информация направляется сразу же в обонятельную кору, не заходя в таламус. От общего сенсорного коллектора (таламуса) информация поступает в соответствующие проекционные и ассоциативные зоны коры. Для каждого анализатора имеются свои конкретные участки, куда приходят импульсы от рецепторного аппарата. В проекционных зонах происходит декодирование информации, возникает представление о модальности сигнала, о его силе и качестве, а в ассоциативных участках коры - определение "что это такое?" - акцепция сигнала. Это происходит с участием процессов памяти.
Высшие отделы наряду с собственными рецепторными механизмами регулируют и процессы адаптации в рецепторах - привыкание. В основном, все рецепторы - быстро адаптирующиеся, поэтому они реагируют на начало воздействия стимула и на окончание его действия. Часть рецепторов - медленно адаптирующиеся, поэтому постоянно реагируют на стимул. Например, быстро адаптируются рецепторы обоняния, вкуса, но медленно адаптируются рецепторы боли (ноцицепторы).
Свойства проводникового отдела анализаторов
Этот отдел анализаторов представлен афферентными путями и подкорковыми центрами. Основными функциями проводникового отдела являются: анализ и передача информации, осуществление рефлексов и межанализаторного взаимодействия. Эти функции обеспечиваются свойствами проводникового отдела анализаторов, которые выражаются в следующем.
1. От каждого специализированного образования (рецептора), идет строго локализованный специфический сенсорный путь. Эти пути как правило, передают сигналы от рецепторов одного типа.
2. От каждого специфического сенсорного пути отходят коллатерали к ретикулярной формации, в результате чего она является структурой конвергенции различных специфических путей и формирования мультимодальных или неспецифических путей, кроме того, ретикулярная формация является местом межанализаторного взаимодействия.
3. Имеет место многоканальность проведения возбуждения от рецепторов к коре (специфические и неспецифичекие пути), что обеспечивает надежность передачи информации.
4. При передаче возбуждения происходит многократное переключение возбуждения на различных уровнях ЦНС. Выделяют три основных переключающих уровня:
спинальный или стволовой (продолговатый мозг);
зрительный бугор;
соответствующая проекционная зона коры головного мозга.
Вместе с тем, в пределах сенсорных путей существуют афферентные каналы срочной передачи информации (без переключении) в высшие мозговые центры. Полагают, что по этим каналам осуществляется преднадстройка высших мозговых центров к восприятию последующей информации. Наличие таких путей является признаком совершенствования конструкции мозга и повышения надежности сенсорных систем.
5. Кроме специфических и неспецифических путей существуют так называемые ассоциативные таламо-кортикальные пути, связанные с ассоциативными областями коры больших полушарий. Показано, что с деятельностью таламо-кортикальных ассоциативных систем связана межсенсорная оценка биологической значимости стимула и др. Таким образом, сенсорная функция осуществляется на основе взаимосвязанной деятельности специфических, неспецифических и ассоциативных образований мозга, которые и обеспечивают формирование адекватного адаптивного поведения организма.
Свойства коркового отдела анализаторов
1. Каждая сенсорная система (каждый анализатор) имеет проекцию в кору больших полушарий. Корковый отдел анализаторов имеет центральную часть и окружающую ее ассоциативную зону (по представлению И. П. Павлова - "ядро" и рассеянные элементы). Центральная часть коркового отдела анализатора состоит из высокодифференцированных в функциональном отношении нейронов, которые осуществляют высший анализ и синтез информации, поступающей к ним. Ассоциативные корковые зоны представлены менее дифференцированными нейронами, способных к выполнению простейших функций. Синтез и анализ афферентных импульсов этими клетками осуществляется в элементарной, примитивной форме.
2. Одной из общих черт организации сенсорных систем является принцип двойственной проекции их в кору больших полушарий. Этот принцип тесно связан с многоканальностью проводящих путей и выражается в осуществлении двух различных типов корковых проекций, которые можно разделить на первичные и вторичные проекции. Первичные и вторичные проекционные зоны окружены ассоциативными корковыми зонами той же сенсорной системы. Примером двойственной проекции в коре головного мозга может служить представительство вкусового анализатора. Его первичная корковая проекция представлена, по-видимому, орбитальной областью коры, так как именно здесь при раздражении рецепторов языка вызванные ответы возникают с самым коротким латентным периодом и имеют самую высокую амплитуду. Вторичной проекционной областью коры вкусового анализатора является соматосенсорная область. Здесь вызванные ответы возникают значительно позже, чем в орбитальной области, и амплитуда их меньше.
3. Взаимодействие анализаторов на корковом уровне осуществляется за счет ассоциативных корковых зон и за счет наличия полимодальных нейронов.
Взаимодействие анализаторов. Деятельность одних анализаторов находится в зависимости от деятельности других, причем, может наблюдаться как усиление деятельности анализатора, так и ее ослабление.
Взаимодействие анализаторов осуществляется на различных уровнях - спинальном, ретикулярном и таламо-кортикальном. Особенно широкая интеграция сигналов наблюдается в нейронах ретикулярной формации. Интеграция сигналов высшего порядка осуществляется на корковом уровне. В результате множественных связей с нижележащими уровнями анализаторов и неспецифических систем многие нейроны коры приобретают способность отвечать на сложные комбинации сигналов различной природы. Это особенно свойственно клеткам ассоциативных областей, а также моторной зоне коры больших полушарий. Пирамидные клетки этой области коры являются общим конечным путем слуховых, зрительных, тактильных и других сигналов.
\
Зрительный анализатор, рецепторный аппарат. Фотохимические процессы в сетчатке при действии света.
Зрительная система (зрительный анализатор) представляет собой совокупность защитных, оптических, рецепторных и нервных структур, воспринимающих и анализирующих световые раздражители.
Периферический отдел зрительной системы. Снаружи глаз виден как специфическое образование, прикрытое верхним веком и состоящее из склеры, конъюнктивы, роговицы, радужной оболочки.
Сетчатка - высокоорганизованная слоистая структура, объединяющая рецепторы и нейроны.
Фоторецепторные клетки - палочки и колбочки - расположены в пигментном слое, наиболее удаленном от хрусталика. Они повернуты от пучка падающего света таким образом, что их светочувствительные концы спрятаны в промежутках между сильно пигментированными эпителиальными клетками. Эпителиальные пигментированные клетки участвуют в метаболизме фоторецепторов и синтезе зрительных пигментов.
Все нервные волокна, выходящие из сетчатки, лежат в виде переплетенного пучка на пути света, создавая препятствие на пути его попадания в рецепторы. В том месте, где они выходят из сетчатки по направлению к мозгу, отсутствуют светочувствительные элементы - это так называемое слепое пятно.
В глазу человека около б млн. колбочек и 120 млн. палочек - всего около 130 млн. фоторецепторов. Плотность колбочек наиболее высока в центре сетчатки и падает к периферии. В центре сетчатки, в небольшом участке, находятся только колбочки. Это участок называется центральной ямкой. Здесь плотность колбочек равна 150 тысячам на 1 мм2, поэтому в области центральной ямки острота зрения максимальная. Палочек в центре сетчатки очень мало, их больше на периферии сетчатки, но острота "периферического" зрения при хорошей освещенности невелика. В условиях сумеречного освещения преобладает периферическое зрение, а острота зрения в области центральной ямки падает. Таким образом, колбочки функционируют при ярком свете и выполняют функцию восприятия цвета, палочки воспринимают свет и обеспечивают зрительное восприятие при слабой освещенности.
Палочки и колбочки отличаются как структурно, так и функционально. Зрительный пигмент (пурпур-родопсин) содержится только в палочках. В колбочках находятся другие зрительные пигменты - иодопсин, хлоролаб, эритролаб, необходимые для цветового зрения. Палочка в 500 раз более чувствительна к свету, чем колбочка, но не реагирует на свет с разной длиной волны, т.е она не светочувствительная. Зрительные пигменты расположены в наружном сегменте палочек и колбочек. Во внутреннем сегменте находится ядро и митохондрии, принимающие участие в энергетических процессах при действии света.
Первичный процесс зрительной рецепции - фотохимическая реакция. Фотоны поглощаются молекулами зрительных пигментов. Каждая молекула пигмента поглощает один фотон (квант света) и переходит на более высокий энергетический уровень. Поглощение кванта света в фоторецепторе запускает многоступенчатый процесс распада молекул пигмента.
Родопсин - зрительный пигмент палочек - состоит из белка (опсина) и ретиналя (альдегида витамина Ai). При распаде родопсина образуется опсин и витамина А,.
Иодопсин - основной пигмент колбочек - также состоит из опсина и ретиналя.
Фотохимические процессы в палочках и колбочках сходны. Родопсин и иодопсин имеют разные спектры поглощения: максимум спектра поглощения родопсина - 500 нм (зелено-голубая часть), максимум спектра поглощения иодопина - 570 нм (желтая часть).
Восстановление пигментов осуществляется в темноте в результате цепи химических реакций (ресинтез), протекающих с поглощением энергии. Ретиналь ресинтезируется на основе цис-изомера витамина Аь поэтому при недостатке витамина А! в организме возникает недостаточность сумеречного зрения. Если освещение постоянно и равномерно, то фотохимический распад пигментов находится в равновесии с их ресинтезом. Этот фотохимический процесс обеспечивает светотемновую адаптацию.
При освещении фоторецептора возникает увеличение электроотрицательности потенциала внутри клетки по отношению к внеклеточному пространству. Это приводит к уменьшению трансмембранного тока в рецепторах. Таким образом, на свет в фоторецепторах возникает гиперполяризационный ответ. Гиперполяризация отличает зрительные от других рецепторов, например, слуховых и вестибулярных, где возбуждение связано с деполяризацией мембраны. Амплитуда рецепторного зрительного потенциала увеличивается при увеличении интенсивности света (освещенности, относительно предыдущего состояния адаптации). Амплитуда рецепторного потенциала зависит также от длины волны света, максимум ответа палочек проявляется при длине волны максимального поглощения родопсина- 500 нм, колбочек - 560-570 нм.
Дата добавления: 2015-07-10; просмотров: 729 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Тесты по физиологии анализаторов | | | Современные представления о восприятии цвета. Основные формы нарушения цветового зрения. |