Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Способ аддитаментов

Читайте также:
  1. He-делание и два способа вхождения в сновидение
  2. I'm not up to such hard work in this hot weather. — Я не способен выполнять такие сложные задания в такую жару.
  3. I. Органическое строение предрасполагает человека к способности разума
  4. I. Способ цепных подстановок.
  5. I. Человеку кажется, что он все производит изнутри своего существа, а на самом деле развитие его способностей зависит от других
  6. I.1 . Конкурентоспособность частного предприятия здравоохранения, факторы ее определяющие.
  7. II. Один на Земле род человеческий приспособился ко всем существующим климатам

 

Как известно, основан на теореме синусов сферической тригонометрии, в которой тригонометрические функции малых аргументов представляют в виде ряда с удержанием двух членов разложений. В результате получают теорему синусов плоской тригонометрии

,

где a¢, b¢, c¢ – приведённые длины сторон треугольника, вычисляемые по формулам

Величина для всей территории Беларуси, если длины сторон брать в метрах. Аа, Ав, Ас – аддитаменты сторон.

Порядок решения треугольников триангуляции:

1. Вычисляется аддитамента исходной стороны и вычитается из её длины, получается приведенная длина исходной стороны

2. По приведенной длине исходной стороны из решения треугольников по теореме синусов плоской тригонометрии последовательно вычисляются приведенные длины сторон треугольников (с контролем). Углы в треугольниках берут сферические уравненные (из способа Лежандра)

3. Вычисляются аддитаменты по приведенным длинам сторон и путём сложения с ними, получают точные значения сторон треугольника

При большом числе треугольников триангуляции или трилатерации их решение производится последовательно. В триангуляции, как известно, может быть измеренной или вычисленной длина одной стороны, соединяющая исходные пункты. Вначале решается треугольник, включивший исходную сторону, а затем решаются другие треугольники, смежные с уже решённым. В трилатерации решение треугольников может производиться в любой последовательности.

При вычислении аддитаментов предварительные значения длин сторон достаточно вычислять с округлением до десятков метров. Результаты вычислений необходимо оформить в виде таблицы.

В практике геодезических вычислений решение треугольников производят с контролем, применяя для этой цели оба способа. Расхождение в длинах сторон не должно превышать 0,001 м, а в углах 0,01² в сетях 1-2 классов.

 

Задание на выполнение работы:

Решить три треугольника звена триангуляции 1 класса по способу Лежандра и способу аддитаментов.

 

Исходные данные для выполнения лабораторных работ № 2 - 4:

Названия углов треугольников Измеренные углы В, L – широта, долгота пункта А А – азимут выходной стороны АВ S – длина выходной стороны АВ
C1 A1 B1 670 56/ 33. 41// 56 38 20. 76 55 25 07. 20   В = 530 06/ 59. 8567// + к/ к// L= 24 15 23. 2078 + к/ к// А = 42 42 10. 513 + к0 к/ к// S = (23 580. 591 + 1. 211к) м к – номер варианта
C2 A2 B2 59 49 38. 18 39 02 33. 10 81 07 48. 64
C3 A3 B3 57 13 27. 94 59 20 17. 84 63 26 16. 97

 


Дата добавления: 2015-07-10; просмотров: 96 | Нарушение авторских прав


Читайте в этой же книге: Проекций | Конические проекции | Азимутальные проекции | Выбор значения масштаба в геодезических проекциях | Гаусса-Крюгера | Сближение меридианов в проекции Гаусса-Крюгера | На плоскости и поправки за нее | Современные требования к геодезическим проекциям | Длина дуги меридиана и параллели | Размеры рамок трапеций топографических карт |
<== предыдущая страница | следующая страница ==>
Способ Лежандра| ПРАКТИЧЕСКАЯ РАБОТА №3

mybiblioteka.su - 2015-2025 год. (0.01 сек.)