Читайте также:
|
|
Конструкцию электромагнитного реле (см. рис. 2.2) можно разбить на две части: воспринимающую и исполнительную. Воспринимающая часть реагирует на входную величину х. К ней относятся обмотка, сердечник, ярмо и якорь, т. е. электромагнит, который реагирует на значение тока в обмотке. Исполнительная часть, воздействующая на внешние цепи, представляет собой контактную систему.
Реле классифицируют в зависимости от физической природы величины х и принципа действия воспринимающей части. Существуют электрические, механические, тепловые, пневматические, гидравлические, акустические и оптические реле. Наибольшее распространение получили электрические реле, как имеющие простую конструкцию и высокую надежность действия.
У механических реле в качестве входной величины х используются скорость, ускорение, перемещение в пространстве или деформация.
Центробежное реле (рис. 2.4, а) реагирует на частоту вращения вала. При увеличении частоты вращения под действием центробежных сил грузы Г расходятся и подвижная муфта ПМ перемещается вправо, что приводит к замыканию контакта К.
Тепловые, или термореле срабатывают под влиянием температуры окружающей среды или от нагрева током, протекающим по обмотке. Биметаллическое термореле (рис. 2.4, б) используют в качестве реле времени или для защиты электрических цепей от перегрузок по току. Реле состоит из двух плоских биметаллических пластинок, один конец которых закрепляют неподвижно, другой связан с контактом. Биметаллическая пластинка образуется из двух слоев металлов с разными температурными коэффициентами линейного расширения. При нагреве током, протекающим по обмотке, оба слоя расширяются неодинаково и пластина изгибается в сторону металла с меньшим температурным коэффициентом расширения. В результате изгиба замыкается контакт.
Пневматические (рис. 2.4, в) и гидравлические реле срабатывают под действием давления сжатого воздуха или жидкости. Их удобно использовать в том случае, если техническая система имеет соответствующую компрессорную установку. В пневматическом реле сжатый воздух из воздушной магистрали 5 поступает в цилиндр 4 и перемещает поршень 3, который с помощью штока 1 связан с контактной системой. Контакты замыкаются. При уменьшении давления в воздушной магистрали поршень под действием пружины 2 перемещается вправо и контакты размыкаются.
В устройствах железнодорожной автоматики, телемеханики и связи в основном используют электрические реле. По принципу действия воспринимающей части электрические реле делятся на электромагнитные, магнитоэлектрические, электродинамические, индукционные, электронные, полупроводниковые, магнитные и др. Наибольшее распространение имеет электромагнитное реле (см. рис. 2.2).
Работа магнитоэлектрического реле (рис. 2.5, а) основана на использовании силы, действующей на проводник (рамку) 1 с током, размещенный в магнитном поле постоянного магнита 2. В электродинамическом реле (рис. 2.5, б) подвижная обмотка 3 располагается в магнитном поле электромагнита, состоящего из обмотки 1 и магнитопровода 2.
По принципу действия исполнительной части электрические реле бывают контактные и бесконтактные. Контактные реле воздействуют на нагрузку R нвследствие механического замыкания или размыкания цепей (рис. 2.6, а). В бесконтактных реле это осуществляется благодаря резкому изменению какого-либо параметра цепи (сопротивление, индуктивность, емкость) без механического размыкания цепи. Управлять нагрузкой можно, резко изменяя сопротивление некоторого элемента (рис. 2.6, б). Таким элементом может являться, например, транзистор, работающий в ключевом режиме (рис. 2.6, в). Достоинством контактного способа коммутации является полное гальваническое отключение нагрузки I выкл = 0, что не обеспечивается при бесконтактном способе І выкл ≠ 0 (см. рис. 2.3 и 2.1). Однако контактный способ коммутации имеет более низкую надежность по сравнению с бесконтактным способом.
В зависимости от рода питающего тока реле могут быть постоянного или переменного тока. Подавляющее большинство используемых реле постоянного тока. Это связано с тем, что их конструкция более проста и, кроме того, реле постоянного тока можно использовать и в цепях переменного тока, включая их через выпрямитель.
По характеру работы якоря электромагнитные реле могут быть разделены на реле с угловым перемещением якоря [поворотный якорь (см. рис. 2.2)] и реле с линейным перемещением якоря [реле соленоидного типа (рис. 2.7)]. Наибольшее распространение получили реле с поворотным якорем, так как они потребляют меньшую мощность. У этих реле три способа возврата якоря в исходное положение при выключении обмотки: под действием силы упругости контактных пружин (см. рис. 2.2), под действием собственной массы якоря (рис. 2.8, а) и под действием специальной возвратной пружины (рис. 2.8, б). Наиболее надежным является способ возврата под действием массы якоря, поскольку сила тяжести никогда не исчезает, а возвратные пружины в процессе длительной работы могут потерять свойства упругости.
Электромагнитные реле постоянного тока бывают нейтральные, поляризованные и комбинированные. Работа нейтрального реле не зависит от полярности подключения к выводам обмотки полюсов питающей батареи. Его якорь (нейтральный) притягивается к сердечнику независимо от направления тока в обмотке. Среди реле железнодорожной автоматики и связи к нейтральным относятся реле НМШ, РЭЛ, НШ, HP, КДР, РКН, РПН, РЭС. Работа поляризованного реле зависит от полярности подключения выводов обмотки. Поляризованный якорь переключается в одно из двух положений в зависимости от направления тока в обмотке (реле ПМПШ, ИМШ, ПЛ). Комбинированное реле имеет нейтральный и поляризованный якори (реле КМШ, КШ).
Дата добавления: 2015-09-02; просмотров: 481 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Общие сведения | | | Основные параметры реле |