Читайте также:
|
|
«При астрономическом наблюдении движения вокруг Солнца таких планет, как Венера, Земля, Марс, Юпитер, Сатурн сначала было установлено, что каждая из них обращается по эллипсообразной орбите; затем также было установлено, что до того неисследованные в отношении их движения планеты Меркурий, Уран, Нептун, Плутон обращаются по эллипсообразным орбитам. В дальнейшем выяснилось, что Венера, Земля, Марс, Юпитер, Сатурн, Меркурий, Уран, Нептун, Плутон исчерпывают класс планет Солнечной системы. На основании чего в форме полной индукции было сделано обобщение: «Все планеты Солнечной системы обращаются по эллипсообразным орбитам».
Конкретное число посылок неистинной индукции иногда может быть ограничено до двух. В таком случае будет иметь место полная математическая индукция. Первая посылка математической индукции должна содержать информацию о том, что рассматриваемый признак присущ первому предмету(B1) интересующего класса { B1,..., Bn }, являющегося рядом (закономерной последовательностью) элементов. Вторая посылка должна содержать информацию, что если этот признак имеется у произвольного элемента данного ряда(Bk), то оно есть и у непосредственно следующего за ним предмета (Bk+1). Из чего делается вывод, что интересующий признак присущ каждому предмету ряда (Bn).
Таким образом, логическая структура полной математической индукции выражается схемой:
B1;
BkÉBk+1.
_____________.
Bn.
Теперь рассмотрим второй подкласс, или индукцию, как множество разнообразных правдоподобных выводов.
К её разновидностям в современной логике относят:
1) неполную, или истинную индукцию;
2) индуктивные методы установления причинных связей, или методы Бэкона—Милля;
3) аналогию;
4) гипотетико-индуктивный метод.
Неполная индукция выполняется в 3-х случаях:
1. Когда нет возможности рассмотреть все элементы интересующего нас класса.
2. Когда число рассматриваемых объектов либо бесконечно, либо достаточно велико.
3. Когда рассмотрение элементов интересующего класса уничтожает эти элементы.
Дата добавления: 2015-09-05; просмотров: 48 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Классификация видов индукции по характеру следования | | | V Пример |