Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Подход Миттельштедта

Итак, перед нами спор аксиом, а это значит, что его продолжение требует новых аргументов. | Пример с кошкой | Опять квантовая механика выглядит неполной. И аргументация вновь оказывается неубедительной. | Операторы для неизмеримых величин в квантовой механике | Квантовая логика, интерфеномены, теорема фон Неймана и индетерминизм | Посредством чисто философских рассуждений; | Глава 7. Критика попыток связать квантовую механику с новой логикой | Подход фон Вайцзеккера | На рисунке схематически изображено, как электроны из светового источника Q проходят через экран с двумя щелями и попадают на фотопластинку. По условиям эксперимента | Электроны - материальные частицы. |


Читайте также:
  1. Алгоритм оценки в рамках доходного подхода.
  2. АЛЬТЕРНАТИВНЫЕ ПОДХОДЫ К АНАЛИЗУ ПОЛНЫХ ТАБЛИЦ
  3. Альтернативные подходы к изменениям в области менеджмента
  4. Аналоговый подход
  5. АПОСТОЛЫ НЕ ПОДХОДЯТ
  6. Более простой подход к выбору даты
  7. В поисках подходящего решения

Другая попытка представить пропозициональное исчисление квантовой механики как квантовую логику была сделана П.Миттельштедтом в его книге "Философские проблемы современной физики"[110]. В основу его попытки положены идеи так называемой диалогической логики Лоренцена. Вкратце они могут быть сведены к следующему[111].

Предположим, что мы знаем, как доказать простые высказывания ("луна круглая", "погода хорошая" и т.п.). Пусть некто P утверждает, что если A, то B (A B). Его оппонент О мог бы оспорить это утверждение. Конечно, это произойдет только в том случае, если сам О доказывает A, и затем требует, чтобы P в свою очередь доказал B, поскольку A B сводится к утверждению, что если существует A, то существует и B. Если в этом споре побеждает P, то между ними состоится диалог, который мы представим следующей схемой:

P O

Утвержд.: A B Утвержд.: A
Как вы знаете, что A? Доказывает A
Утвержд.: B Как вы знаете, что B?
Доказывает B  

Если О хочет победить, он должен вначале доказать A, предполагая, что P не может доказать B. Проигрыш О означает, что он либо не доказывает A, либо P может доказать A, но тогда О не может доказать B.

Пусть P утверждает: A (B A). О спорит с ним. Как может в этом случае идти диалог? Обратимся к схеме.

P O

1. A(BA) A
2. Как вы знаете, что A? Доказывает A
3. BA B
4. Как вы знаете, что B? Доказывает B
5. A Как вы знаете, что A?
6. Ссылается на 2-й шаг О  

P одержал бы победу уже на втором шагу, если бы О не мог доказать A. Но поскольку О смог доказать A, P должен прийти к заключению импликации, имевшей место на 1 шагу. Тогда О должен доказать B или проиграть. Поскольку ему это удается, P снова должен прийти к заключению импликации (B A). Но эта работа уже проделана О и P остается только сослаться на доказательство A, сделанное О на втором шагу.

Значит, P не только выиграл данный спор, но он всегда будет побеждать в таком диалоге независимо от конкретного содержания A и B и совершенно независимо от того, доказаны ли в действительности A и B. Поэтому утверждение A (B A) может считаться общезначимым, поскольку его можно делать в любом диалоге и быть всегда правым в любом подобном споре. Именно по этой причине данное утверждение является логическим: выражаясь в терминологии Лоренцена, оно относится к так называемой эффективнойпропозициональнойлогике, которая построена на принципе общезначимости своих высказываний. Но по той же самой причине закон исключенного третьего (TND) в этой логике не фигурирует.

По мнению Миттельштедта, в свете квантовой механики эффективная пропозициональная логика частично либо ложна, либо не применима. Дело не в критике закона исключенного третьего самого по себе, а в критике логики, которая должна отказаться от этого закона и, таким образом, перестроиться, чтобы стать общезначимой.

Миттельштедт пишет: "Или мы признаем то, что утверждает квантовая теория, (а именно, что, имея два высказывания, мы можем определить, являются ли они соизмеримыми или нет), - в таком случае логика сохраняет свою значимость в полном объеме, однако, некоторые из ее законов не могут применяться, когда речь идет о несоизмеримых свойствах. Или же мы отвергаем утверждения квантовой механики и, следовательно, связываем все измеримые свойства с квантово-механическими системами, то есть вводим фиктивные объекты. В этом случае некоторые законы классической логики оказываются ложными. Те же законы логики, которые при этих условиях остаются истинными, образуют то, что можно назвать квантовой логикой"[112].

Сразу же возникает вопрос: как может часть логики оказаться ложной из-за того, что мы отвергли какую-то часть эмпирического знания, того знания, которое формулирует квантовая механика?

Посмотрим, как сам Миттельштедт развивает свою аргументацию. Он прибегает к рассмотренному выше примеру высказывания, которое общезначимо, поскольку его можно отстоять в любом споре: A (B A). Пусть A и B - взаимодополнительные высказывания квантовой физики. Тогда 2-й и 4-й шаги О означают, что A и B доказаны с помощью измерений. Но если мы рассуждаем в рамках квантовой механики, то, подойдя к 6 шагу, О больше не может ссылаться на 2-й шаг, потому что измерение B аннулирует измерение, с помощью которого доказано A, поскольку мы действительно имеем дело с дополнительными высказываниями. Таким образом, на 6-м шагу A уже нельзя принять. Следовательно, P больше не может ответить на вопрос О "Как вы знаете, что A?" (5-й шаг О); поэтому, как полагает Миттельштедт, P проигрывает этот спор.

Поэтому, если из-за незнания квантовой механики или из-за пренебрежения ею высказывание A (B A) просто принимается как общезначимое и тождественно истинное, что имеет место в эффективной логике, то все сказанное выше можно считать ложным.

Однако дело обстоит иначе, когда квантовая механика не исключается из игры. В таком случае, утверждает Миттельштедт, P может защищать высказывание A (B A) в споре, потому что на 4-м шагу О должен отказаться от своих посылок, то есть его доказательство B аннулировало бы его доказательство A. С этой точки зрения данная импликация была бы универсально доказуемой потому, что она вообще не была бы применимой.

Но это неприемлемо по следующей причине: если высказывание A (B A) имеет тот смысл, который определяется точными логическими средствами, то оно универсально значимо уже в силу этих определений и никак не зависит от каких бы то ни было сведений, заимствованных из квантовой механики. Оно означает только следующее: " Если доказано A, то, если доказано B, то и A доказано". Значит, если A не доказано, высказывание все же остается верным, поскольку оно утверждает нечто лишь в том случае, когда A доказано. Если доказательство A аннулировано доказательством B, то мы приходим к случаю, когда неверно, что доказано A. И здесь высказывание остается верным. Поэтому не имеет значения, применимо ли в данном случае логическое высказывание, поскольку это не отражается на его формальной истинности.


Дата добавления: 2015-09-04; просмотров: 51 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Рассмотрим высказывание| Аргументация в пользу этого тезиса может быть представлена в сокращенной форме, достаточной для дальнейшего критического анализа.

mybiblioteka.su - 2015-2024 год. (0.007 сек.)