Свойства степенной функции с отрицательным рациональным показателем.
К началу страницы | К началу страницы | К началу страницы | Свойства степенной функции с положительным рациональным показателем большим единицы. | Свойства степенной функции с отрицательным рациональным показателем. | Замечание. | Свойства степенной функции с отрицательным рациональным показателем. | Свойства степенной функции с отрицательным рациональным показателем. | Свойства степенной функции с отрицательным рациональным показателем. | Замечание. |
- Область определения: .
Поведение на границе области определения при и а – несократимая рациональная дробь с четным числителем и нечетным знаменателем.
Следовательно, х = 0 является вертикальной асимптотой. - Область значений: .
- Функция четная, так как .
- Функция возрастает при , убывает при .
- Функция вогнутая при .
- Точек перегиба нет.
- Горизонтальной асимптотой является прямая y = 0.
- Функция проходит через точки (-1;1), (1;1).
- При а = 0 и имеем функцию - это прямая из которой исключена точка (0;1). При а = 0 и х = 0 условимся не придавать функции никакого числового значения.
Дата добавления: 2015-08-27; просмотров: 50 | Нарушение авторских прав
mybiblioteka.su - 2015-2025 год. (0.005 сек.)