Читайте также:
|
|
Повторим обычные школьные выражения с числами. Числовое выражение состоит из чисел, знаков математических действий и скобок, например: . При расчётах справедлив знакомый алгебраический приоритет: сначала учитываются скобки, затем выполняется возведение в степень / извлечение корней, потом умножение / деление и в последнюю очередь – сложение /вычитание.
Если числовое выражение имеет смысл, то результат его вычисления является числом, например:
Матричные выражения устроены практически так же! С тем отличием, что главными действующими лицами выступают матрицы. Плюс некоторые специфические матричные операции, такие, как транспонирование и нахождение обратной матрицы.
Рассмотрим матричное выражение , где – некоторые матрицы. В данном матричном выражении три слагаемых и операции сложения/вычитания выполняются в последнюю очередь.
В первом слагаемом сначала нужно транспонировать матрицу «бэ»: , потом выполнить умножение и внести «двойку» в полученную матрицу. Обратите внимание, что операция транспонирования имеет более высокий приоритет, чем умножение. Скобки, как и в числовых выражениях, меняют порядок действий: – тут сначала выполняется умножение , потом полученная матрица транспонируется и умножается на 2.
Во втором слагаемом в первую очередь выполняется матричное умножение , и обратная матрица находится уже от произведения. Если скобки убрать: , то сначала необходимо найти обратную матрицу , а затем перемножить матрицы: . Нахождение обратной матрицы также имеет приоритет перед умножением.
С третьим слагаемым всё очевидно: возводим матрицу в куб и вносим «пятёрку» в полученную матрицу.
Если матричное выражение имеет смысл, то результат его вычисления является матрицей.
Все задания будут из реальных контрольных работ, и мы начнём с самого простого:
Пример 9
Даны матрицы . Найти:
Решение:порядок действий очевиден, сначала выполняется умножение, затем сложение.
Сложение выполнить невозможно, поскольку матрицы разных размеров.
Не удивляйтесь, заведомо невозможные действия часто предлагаются в заданиях данного типа.
Пробуем вычислить второе выражение:
Тут всё нормально.
Ответ: действие выполнить невозможно, .
Повысим градус:
Пример 10
Даны матрицы .
Найти значения выражений:
Решение: Разбираемся с произведением . Сначала транспонируем матрицы «дэ»:
И умножаем матрицы:
Матричное умножение выполнить невозможно, так как число столбцов матрицы не равно числу строк матрицы .
А вот с произведением проблем не возникает:
Еще раз заметьте, как на первом же шаге множитель (–1) выносится вперёд, и ноги до него доходят в самую последнюю очередь.
С более сложными выражениями вроде чайникам рекомендую разбираться поэтапно, чтобы не запутаться:
Сначала находим произведение:
Затем считаем второе слагаемое:
И, наконец, всё выражение:
Более подготовленные студенты могут оформить решение одной строкой:
Ответ: действие выполнить невозможно, , .
Пара заключительных примеров для самостоятельного решения:
Пример 11
Для матриц Примера №10 выполнить действия:
Пример 12
Вычислить значение матричного многочлена , если .
В последнем примере решение удобно оформить по пунктам.
Матричные выражения – это просто! И вряд ли на практике вам встретится что-то сложнее, чем разобранные примеры.
Теперь во всеоружии можно приступить к изучению матричных уравнений.
Желаю успехов!
Решения и ответы:
Пример 2: Решение:
Ответ:
Пример 5: Решение:
Ответ:
Пример 7: Решение:
1) Используем формулу
2) Используем формулу
Ответ:
Пример 8: Решение: Сначала возведём матрицу в квадрат:
Возведём матрицу в куб:
Возведём матрицу в четвёртую степень двумя способами:
Ответ:
Пример 11: Решение:
Возведение в квадрат невозможно, поскольку операция определена только для квадратных матриц.
Ответ: , действие выполнить невозможно,
Пример 12: Решение:
1)
2)
3)
4)
5)
Ответ:
Примечание: выражение можно было вычислить и по-другому – предварительно раскрыть скобки:
Дата добавления: 2015-08-27; просмотров: 145 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Как возвести матрицу в куб и более высокие степени? | | | Как найти обратную матрицу? |