Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Можно ли к матрице прибавить число?

Обратите внимание, что ! Это почти всегда так! | Как вычислить определитель? | Свойства определителя. Понижение порядка определителя | Эффективные методы вычисления определителя | Свойства определителя | При транспонировании матрицы величина её определителя не меняется | Если две строки (или два столбца) определителя поменять местами, то определитель сменит знак | Из строки (столбца) определителя можно вынести общий множитель | Если две строки (столбца) определителя пропорциональны (как частный случай – одинаковы), то данный определитель равен нулю | К строке определителя можно прибавить другую строку, умноженную на ненулевое число. При этом величина определителя не изменится |


Читайте также:
  1. I. a. Заполните таблицу недостающими формами. Используйте сокращения, где возможно
  2. o возможность использования высококвалифицированных специалистов.
  3. X. Жизнь в матрице: уместные реакции на иллюзорные стимулы
  4. X. Жизнь в матрице: уместные реакции на иллюзорные стимулы
  5. А какие существуют ограничения на "иммиграцию"? Как можно получить вид на жительство?
  6. А можно ли так работать с опухолью?
  7. А можно ли так работать с опухолью?

Например: . Ну, или наоборот:

Нет. К матрице можно прибавить только другую матрицу, причём точно такого же размера.

Матрицу можно умножить на число. Но сложить их нельзя. Таковы правила игры.

Следует отметить, что допустимо сложение определителя матрицы с числом:

Результат вычисления определителя – число, а два числа суммируются без всяких проблем.

Вышесказанное, естественно, справедливо и для разности, ведь вычитание – это частный случай сложения.

Как на счёт того, чтобы плотно зависнуть у меня сегодня вечером? =) Практика показывает, что наибольшие трудности у студентов вызывает умножение матриц. Так наполним же кружки соответствующей информацией.

Повторим само правило. В статье Действия с матрицами я рассказал о том, какие матрицы можно умножать и привёл ряд наиболее распространённых примеров. Давайте рассмотрим операцию чуть подробнее и выделим два существенных пункта:

1) Смотрим на левую часть. Из первого урока нам известно, что матричное умножение возможно в том и только в том случае, если количество столбцов первой матрицы равно количеству строк второй матрицы.

2) Смотрим на правую часть и обращаем внимание на размерность результатаСКОЛЬКО строк и столбцов должно быть у итоговой матрицы.

Пример 1

Умножить матрицы

Решение: произведение существует, причём итоговая матрица состоит из 1-ой строки и 2-х столбцов:

Ответ:

Пример 2

Умножить матрицы

Это пример для самостоятельного решения.

Предложенные примеры не случайны. Они вроде бы просты, но у начинающих здесь нередко возникает путаница с размерами матрицы-результата. Поэтому читателям с небольшим опытом целесообразно переписать вышеприведённую формулу и особенно серьёзно отнестись к практическим примерам.

А по каким принципам составляются начинка (суммы произведений чисел), думаю, все уже поняли. Дополнительно возьмём на вооружение образную ассоциацию, которая поможет хорошо запомнить действие. Читаем следующий параграф:


Дата добавления: 2015-08-27; просмотров: 235 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
К столбцу определителя можно прибавить другой столбец, умноженный на ненулевое число. При этом величина определителя не изменится| Как возвести матрицу в квадрат?

mybiblioteka.su - 2015-2024 год. (0.006 сек.)