Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

При транспонировании матрицы величина её определителя не меняется

Действия с матрицами | Какие матрицы можно умножать? | Как умножить матрицы? | Обратите внимание, что ! Это почти всегда так! | Как вычислить определитель? | Свойства определителя. Понижение порядка определителя | Эффективные методы вычисления определителя | Из строки (столбца) определителя можно вынести общий множитель | Если две строки (столбца) определителя пропорциональны (как частный случай – одинаковы), то данный определитель равен нулю | К строке определителя можно прибавить другую строку, умноженную на ненулевое число. При этом величина определителя не изменится |


Читайте также:
  1. E) величина, характеризующая степень нагретости вещества
  2. VIII. Долина создания душ: понимание матрицы
  3. VIII. Долина создания душ: понимание матрицы
  4. XVI. Просветленность — это судьба: двойная жизнь волшебников матрицы
  5. XVI. Просветленность — это судьба: двойная жизнь волшебников матрицы
  6. XVIII. Стать богом: жизнь за пределами матрицы
  7. XVIII. Стать богом: жизнь за пределами матрицы

Транспонируем матрицу:

Примечание: действие подробно разобрано на уроке Действия с матрицами.

Согласно свойству, определитель транспонированной матрицы равен тому же значению: . Желающие могут убедиться в этом самостоятельно.

В ходу и более простецкая формулировка данного свойства: если транспонировать определитель, то его величина не изменится.

Запишем оба определителя рядышком и проанализируем один важный момент:

В результате транспонирования первая строка стала первым столбцом, вторая строка – вторым столбцом, третья строка – третьим столбцом. Строки стали столбцами, а результат не изменился. Из чего следует важный факт: строки и столбцы определителя равноправны. Иными словами, если какое-нибудь свойство справедливо для строки, то аналогичное свойство справедливо и для столбца! В действительности с этим мы уже давно столкнулись – ведь определитель можно раскрыть как по строке, так равноправно и по столбцу.

Не нравятся числа в строках? Транспонируйте определитель! Возникает только один вопрос, зачем? Практический смысл рассмотренного свойства невелик, но его полезно закинуть в багаж знаний, чтобы лучше понимать другие задачи высшей математики. Например, сразу становится ясно, почему при исследовании векторов на компланарность их координаты можно записать как в строки определителя, так и в столбцы.


Дата добавления: 2015-08-27; просмотров: 100 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Свойства определителя| Если две строки (или два столбца) определителя поменять местами, то определитель сменит знак

mybiblioteka.su - 2015-2024 год. (0.007 сек.)