Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Relationship to Laplace transform

Bilateral Z-transform | Unilateral Z-transform | Geophysical definition | Inverse Z-transform | Region of convergence | Examples conclusion | Relationship to Fourier transform | Linear constant-coefficient difference equation | Zeros and poles | Output response |


Читайте также:
  1. Affine transformations and their properties
  2. Angry Birds Transformers – новая игра от Rovio
  3. Bilateral Z-transform
  4. CHARACTERISTICS OF THE PERIOD DOSE TITRATION WARFARIN IN PATIENTS WITH ATRIAL FIBRILLATION. RELATIONSHIP WITH CLINICAL FACTORS
  5. Inverse Z-transform
  6. LES TRANSFORMATIONS
  7. Lexical transformations in translation.

The Bilinear transform is a useful approximation for converting continuous time filters (represented in Laplace space) into discrete time filters (represented in z space), and vice versa. To do this, you can use the following substitutions in H(s) or H(z):

from Laplace to z (Tustin transformation), or

from z to Laplace. Through the bilinear transformation, the complex s-plane (of the Laplace transform) is mapped to the complex z-plane (of the z-transform). While this mapping is (necessarily) nonlinear, it is useful in that it maps the entire axis of the s-plane onto the unit circle in the z-plane. As such, the Fourier transform (which is the Laplace transform evaluated on the axis) becomes the discrete-time Fourier transform. This assumes that the Fourier transform exists; i.e., that the axis is in the region of convergence of the Laplace transform.


Дата добавления: 2015-08-27; просмотров: 85 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Properties| Process of sampling

mybiblioteka.su - 2015-2024 год. (0.005 сек.)