Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Геометрический смысл коэффициентов в уравнении гиперболы

Гипербола: определение, свойства, построение | Фокальное свойство гиперболы | Директориальное свойство гиперболы | Параметрическое уравнение гиперболы |


Читайте также:
  1. IV дом: корни. К этому дому относятся родители, семья жилище и недвижимость в широком смысле слова, а также отношение к родине.
  2. Past Participle смыслового глагола является неизменяемой частью формулы образования страдательного глагола.
  3. А III: ограничения, но не гонения; в каком-то смысле - возвращение к политики Ники I «самодержавие, православие, народность».
  4. А смысл?
  5. Амбициозные и бессмысленные
  6. Бессмысленная попытка
  7. Бессмысленность есть расширение.

 

Найдем точки пересечения гиперболы (рис.3.42,а) с осью абсцисс (вершины гиперболы). Подставляя в уравнение , находим абсциссы точек пересечения: . Следовательно, вершины имеют координаты . Длина отрезка, соединяющего вершины, равна . Этот отрезок называется действительной осью гиперболы, а число — действительной полуосью гиперболы. Подставляя , получаем . Длина отрезка оси ординат, соединяющего точки , равна . Этот отрезок называется мнимой осью гиперболы, а число — мнимой полуосью гиперболы. Гипербола пересекает прямую, содержащую действительную ось, и не пересекает прямую, содержащую мнимую ось.

 


Дата добавления: 2015-08-17; просмотров: 84 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Уравнение гиперболы в полярной системе координат| Замечания 3.10.

mybiblioteka.su - 2015-2025 год. (0.006 сек.)